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Chapter 1

Asset Pricing

1.1 Introduction

While mainly associated with finance, asset pricing is of prime interest to macroe-
conomists. In fact, most of the seminal work done in this field was undertaken within
the scope of macroeconomic models. This section reviews some of the most influential
work in asset pricing, with emphasis on modeling issues and the main insights that are
generated by the models.

Economic modeling, in any environment (not only in asset pricing) requires a careful def-
inition of the environment or primitives on which agents will act. The key ingredients
of a well-described environment are the following:

1. Time - Can be continuous or discrete. The time horizon can be finite or infinite.

2. Population/Demographics - Specifies what types of agents there are, if the
population is countable or a continuum, and whether these agents are infinitely or
finitely lived.

3. Commodity Space/Endowments - Specifies what agents can consume, and what
can they trade to obtain consumption goods/services.

4. Technology - Specifies what can the economy produce, and with what types of
inputs.

5. Preferences - How do agents rank/value each of the available commodities.

6. Information Structure - Whether information is complete, perfect or neither.
Whether there is private information or informational asymmetries.

7. Market Structure - Specifies what can be traded and what cannot be traded.
What assets are there? Are markets complete? Who owns firms? How many
markets there are?



8. Equilibrium Concepts - These summarise the way agents interact with each
other. In a competitive equilibrium, for example, agents only interact through
the market, only adjusting their behviour and reacting to prices that are common
knowledge across all agents .

1.2 Lucas 1978 - Asset Prices in an Exchange Econ-
omy

This is a seminal article on the asset pricing literature, having introduced for the first
time, or pushed towards popular usage, several conceptual and methodological novelties:
stochastic discount factors, the concept of rational expectations equilibrium, and rational
pricing functions, among others. The article was also a testing ground for several well-
known results in dynamic programming that would become widely used in the literature.

1.2.1 Environment

The basic environment is as follows (using the ’checklist’ presented in the previous sec-
tion):

1. Time is discrete and infinite.

2. There is a unit measure of ex-ante equal agents who are infinitely lived. We shall
simplify this assumption and assume existence of a representative agent (RA) 2.

3. There is one durable good: a set of ’trees’. There are n different types of trees,
each in unit measure. Every period t, each tree yields some dividend d;; (the 'fruit’,
i€ {l,...,n} indexes the type of tree). Let d; = (dy, ..., dn) denote the vector of
fruit yielded by the n trees at time ¢.

4. Fruit, the consumption good, is perishable. Let ¢; denote the amount of fruit
consumed by the RA at time t.

5. Feasibility imposes that, at each period, consumption should not exceed the total
amount of fruit that was generated by the trees. That is

n
c < Zdit
i1

'For example, when talking about Competitive Equilibrium, we are effectively applying the game-
theoretic concept of Nash Equilibrium.

2The whole point of this, popularised as the Lucas trick for pricing assets, is that we are interested
in the price variables, and not in studying quantities. This framework allows us to focus on equilibrium
prices, while keeping quantities 'fixed’.




Under monotonic preferences, this constraint will be satisfied in equality (as the
fruit is perishable, so it is wasted if not eaten today), thus feasibility is equivalent
to market clearing for goods/fruit.

6. Preferences are defined over infinite sequences of consumption ¢ = {¢;}°,. They
are summarised by an utility function U(c), which is time and state-separable with
von-Neumann-Morgenstern utility u(c;):

Ule) =Eqo Y _ Bulcy)

The discount factor is 5 € (0, 1).

7. The information structure is such that there is aggregate uncertainty regarding the
realisation of each tree’s dividends.

8. In terms of endowments, each agent is born at ¢ = 0 endowed with a tree of type 1.
In the context of the RA model, he owns all the trees in the economy.

9. There are two markets in this economy: a spot market for fruit, and a financial mar-
ket where equity shares are traded. Clearly, in the RA formulation, both markets
will clear trivially (the asset markets clearing at zero trades).

10. The Equilibrium concept is the usual Walrasian notion of Competitive Equilibrium.

1.2.2 The Individual Optimisation Problem

Any agent is born at ¢ = 0 and chooses a sequence of consumption ¢; and stock holdings
S¢+1 (which is a n x 1 vector, given that there are n trees). The problem can be described
as

max EOZﬁtu(ct) (1.1)
t=0

{et,s41}122,

subject to a sequence of one-period budget constraints
i+ usepr = (G + dy)sy
where ¢, is a n x 1 vector of asset prices, and non-negativity constraints
Cty Sey1 2> 0

Note that s;,; > 0 imposes no short-selling of tree equity. We shall start by imposing
some structure on the general problem.

Assumption 1.2.1. Tree dividends follow a Markov Process (not necessarily a Markov
Chain). Thus the evolution of {d;};2, can be described as

P(di 1 < 2'|dy = x) = F(x, 1))

where F : R*™ — [0,1] is a transition function.
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Note that the deep parameters of the economy are (u, 3, F'): preferences and the transition
function. We shall impose the following assumptions on those:

Assumption 1.2.2. v : R, — R is bounded, continuously differentiable, increasing,
strictly concave and u(0) = 0.

Assumption 1.2.3. The transition function F : R — R (hidden assumption: all
dividends are non-negative) is continuous, has a stationary distribution m such that

m(y') = /F(yﬁ y)dr(y)

and for any continuous function g : R" — R, we have that [ g(y')dEF(y',y) is continuous
my as well.

This last assumption tells us that the conditional expectation of any continuous function
(of today’s dividends) will also be continuous on today’s dividends. That is, not only
is the transition function continuous, but it also preserves continuity of function under
the conditional expectation operator. This property will be extremely important in the
study and characterisation of the equilibrium pricing functions.

Why do we care about pricing functions at all? Clearly, from the agent’s problem, it
follows that the optimal choice of asset holdings (and, hence, of consumption) will depend
on an Euler Equation, which in turn requires the individual to form expectations not only
about tomorrow’s dividends, but also about tomorrow’s prices. We can easily see that,
assuming an interior solution:

u'(c)pr = BE[(Sri1 + diy1)u' (1))

Thus knowing next period’s price will be fundamental for the individual to be able to
optimally allocate consumption intertemporally. Thus the individual will have to form,
in some way, expectations of the pricing function. It turns out that, in a stationary
environment (as ours will be), we will be able to define a pricing function ¢, = ¢(d;) that
defines a map from dividends to prices. Therefore, endowed with the knowledge of the
process for dividends, the agent is then able to form well-defined expectations for prices.
This will be at the core of the concept of Rational Expectations Equilibrium. For now,
let us present the typical definition of a competitive equilibrium:

Definition 1.2.1. A Competitive Equilibrium is an allocation {ci, si11}52,, and a
price system {¢y}°, such that

1. The allocation solves the individual problem in 1.1, given prices.

2. Markets clear

n
G = E d;t
=1

St =L

for all t > 0.



Note that, in our case, given that we are dealing with a RA problem, market clearing
will be trivial: the RA will simply consume all fruit yielded by trees and will not trade
assets. This allows us to focus on prices and their properties only. This is an application
of the well-known Lucas’ trick for pricing assets (whose name comes from this article).

1.2.3 The Individual Problem in Recursive Form

Given that the problem at hand is stationary (that is, it does not matter, given endow-
ments, whether the agent is solving it at ¢ or at s > ¢, as the optimal policies will be
of the same form), we can study it in its recursive formulation. In this case, there will
be 2n state variables: n endogenous states (asset holdings chosen last period, s) and n
exogenous states (dividends this period, d). The controls will be (¢, s’), consumption and
asset holdings to be carried on to the next period. The Bellman Equation is

V(s,d) = max{u(c) + BE4[V (s, d)|d]} (BE)

s.t.
c+ o(d)s' = [¢(d) + d]s
c>0
s>0

where, note, the expectation is defined as

Eq V(s d)|d] = /V(s’,d’)dF(d/,d)

1.2.4 Recursive Competitive Equilibrium

This formulation allows us to take advantage of a different equilibrium concept, which is
well-suited to recursive problems:
Definition 1.2.2. A Recursive Competitive Equilibrium is a collection of func-

tions:

o A continuous and bounded value function V (s,d)
o Decisions rules h’(s,d) : R — Ry and h*(s,d) : R — R"

e A price function ¢ : R} — R”
such that

1. Given ¢, V(s,d) solves (BE), and (h¢, h*) are the associated optimal decision rules
implied by (BE).



2. Markets clear

he(s,d) = d;

i=1

he(s,d) =1

for all (s,d).

Existence of RCE requires, first and foremost, existence of all the objects that are listed:
a value function and policy functions that solve (BE), as well as a pricing function.
Characterisation of the value and policy functions is achieved through the use of standard
dynamic programming arguments, as long as we allow ¢ to exist for a second. The
following propositions establish existence (and uniqueness) of these objects.

Proposition 1.2.1. For each continuous ¢, there is a unique, bounded, continuous and
non-negative V (s, d; @) satisfying (BE). Moreover, for each d, V (s, d; ¢) is increasing and
COnCave in s.

Proof. Start by defining the operator T': CB(X) — CB(X), a self-map on the space of
bounded and continuous functions endowed with the sup norm. Let X = Ri”. We can
write the problem in (BE) for an arbitrary value function f(x) = f(s,d) (where the price
function ¢ is implicitly taken as a parameter) as

(s, d) = max{ul(0(d) + s — )+ B [ (5. )F(. D)

subject to the constraint correspondence I'(s,d) = {s" € R} : 5" < (¢(d) + d)s}. We
start by claiming that 7" is indeed a self-map on (CB(X), || - |l«)- To see this, let f(s,d)
be bounded. Utility is, by assumption, bounded. Furthermore, the expectation of a
bounded function must be bounded as well. Hence it follows that T'f(s,d) is bounded.
Now, if f(s,d) is assumed to be continuous, do we also get continuity of T f(s,d)? This
follows from the Maximum Theorem: given our assumption that the conditional expec-
tation preserves continuity, and given that we assumed continuous utility, we know that
the argument of the maximisation problem is continuous. Furthermore, the constraint
correspondence I' is compact and continuous. Hence it follows that T'f (s, d) will, indeed,
be continuous.

This establishes T" as a self-map. We now want it to be a contraction mapping on
CB(X). For this, we can use Blackwell’s Sufficient Conditions:

1. (Monotonicity) For any pair of functions f,g € CB(X), we have that f > g =
Tf > Tg. To see this, assume that f > g. Let s; denote the optimal portfolio
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choice for the function g. Then
(s, d) = mx{ul(0(d) + s = )+ B [ (5. )F(d. D)}
> ul(6(d) + d)s )+ 3 [ £, )P d)

> ul(o(d) 4 d)s — 5] + 5/9(5’9, d)dF(d',d)
=Tg(s,d)

where the second line follows from the fact that s is not necessarily optimal at f
and the third from f > g.

2. (Discounting) For any f € CB(X) and a € R, we must have T'(f +a) < Tf + fa
for some 3 € (0,1). Let a be some positive constant, then:

77 +a)(s.d) = max{ul(9(d) + d)s — 5] + 5 [ 1/ )P d) + a)
=Tf(s,d)+ Pa

with 8 € (0,1) by assumption.

Thus T satisfies all of Blackwell’s conditions and is established as a contraction mapping
on CB(X).

Now, C'B(X) with the sup norm is a complete metric space. Therefore, by Banach’s
Fixed Point Theorem, there exists a unique fixed point for 7', our value function V (s, d).
This establishes existence, uniqueness, boundedness and continuity of the value function.
To see that the value function is non-negative, note that the constraint correspondence
imposes (¢(d) +d)s — s’ > 0. By assumption, u(0) = 0 and u is increasing. Therefore,
u[(¢(d) + d)s — §'] € [0,u[(¢p(d) + d)s]]. This means that

ul(¢(d) + d)s]
0<V(s,d) < — 15

Thus V' (s, d)is non-negative (this also proves boundedness, as § < 1 and u is assumed to
be bounded).

It remains to show that for each d, V(s,d) is increasing and concave in s. This is done
by applying the usual corollary of the Contraction Mapping Theorem. Let s; > sg. If
we show that T f(s,d) € S C CB(X) and S is closed, for a generic f € S C CB(X),
then the corollary implies that the fixed point will belong to S. This allows us to take
advantage of the fact that the set of weakly increasing functions is closed. Furthermore,
if Tf(s,d) € S"CSCCB(X) for some S’ not necessarily closed (i.e. the set of strictly
increasing functions), the corollary also establishes that the fixed point will belong in
S’. Take any f(s,d) weakly increasing and s; > sg. Start by noting that the constraint
correspondence is monotonic, in the sense that since ¢(d) + d > 0, we have that = €
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[(so,d) = = € I'(s1,d). Now, denote by s}, s( the optimal choices at states s; and s,
respectively:

Tf(s1,d) = max {u[(gb(d)—i—d)sl—s’]—i—ﬁ/f(s’,d’)dF(d’,d)}

s'€l(s1,d)

2M@@+®&—%+ﬁ/ﬂ%ﬂﬂﬂ&®}

> ul(6(d) + d)so 4]+ 8 [ F(sh, ). D)
=T f(s0,d)

where the third line follows from monotonicity of u. If we further assume that u is
strictly increasing, we get that T'f(s,d) is strictly increasing in s. By the corollary, this
is sufficient to show that the fixed point will be increasing in s. Also note that the second
line follows from monotonicity of I'(s, d), as s is available if the state is s;.

For concavity, let sy > so and let sy = As; + (1 — A)so, VA € [0, 1]. Let s/, s denote the
optimal policies at sy, sg, respectively and let

sh=As] + (1= N)sg

We now take advantage of convezity of the constraint correspondence: if s} € I'(sq1,d)
and sj, € I'(sg, d), then A\s}+(1—\)s{ = s € I'(sa, d) (this is easy to check). Note further
that s is NOT necessarily the optimal policy at sy. Note then that, for any concave
feCB(X):

Tf(sx,d) = max {u[(¢(d) +d)sy — ']+ ﬁ/f(s’,d’)dF(d',d)}

s'€T(sz,d)

> ul(p(d) + d)sy — si] + 6/f(s')\, d)dF(d,d)

= u[M((d) + d)s1 — 1) + (1 = A)((¢(d) + d)so — sp)] + ﬁ/f()\sﬁ + (1= N)sg, d)dF(d',d)
> Auf(o(d) +d)s1 — 1] + (1 = Nu[(6(d) + d)so — sg]

428 / (s, dVAF(d d) + (1 — N3 / F(sh, d)AF(d, d)

= NT'f(s1,d) + (1 = N)T f(so0,d)

Thus establishing concavity of T'f. Note that from the assumption that u is strictly
concave, we get in fact strict concavity of the contraction operator and, hence of the
fixed point (even if f is not strictly concave, but only weakly so - the same happens with
monotonicity). O

The following result also ensures that the value function is well-behaved

Proposition 1.2.2. (Benveniste-Scheinkman) If V (s, d; ¢) is attained at (c,s") with ¢ >
0, then V s differentiable with respect to s at (s,d) and

oV (s,d; 9)

95 u'(c)[¢i(d) + di]



Proof. (Informal Discussion) The proof of the general result for differentiability of a
value function in the context of dynamic programming may be found in Stokey, Lucas &
Prescott (Ch. 4). It can be easily checked that all assumptions for differentiability are
satisfied if the value function is concave and the solution is interior (here we only require
interior consumption, interior asset holdings will be trivially implied from market clear-
ing). The expression for the derivative follows from the Envelope Condition associated
with (BE), by taking the derivative of the value function with respect to s;. O

1.2.5 Computing the Price Function

Assuming an interior solution, the first order condition with respect to s, from (BE) is

oV (s, d; o) ‘dl

W (¢)i(d) = BBy [ o

Using the envelope condition and plugging in the above FOC gives us the Euler Equation
for each asset i (we will have n of them)

u'(c)gi(d) = BEx [[¢:(d) + di]u' () d]

In equilibrium, the goods market clears at every period
C = Z dz
i=1
d = Z d;
i=1

Thus we can eliminate consumption from the Euler Equation:

u (Z di> ¢i(d) = BEy |[¢s(d) + dJu (Z d’) \d]

This brings us closer to our main objective, which is to compute and characterise ¢. In
fact the n Euler Equations form a system of functional equations, which can, in principle,
be solved for the n pricing functions (one for each asset). As we will see, dynamic
programming methods will prove to be extremely useful in this endeavour: define two
auxiliary functions (for each asset):

= <i di> ¢i(d)

gi(d) =1 / u (Z d;> didF(d',d)



fi can be seen as the price of an asset in terms of marginal utility: how much utility
does the consumer forego to acquire the asset today. g;, on the other hand, represents
the expected and discounted gain from acquiring the asset in terms of utility (which is
marginal utility times the dividend), isolating for capital gains (possible gains from a rise
in price that allows the asset to be sold at a higher price). The Euler Equation can then
be rewritten as

W (Z d,-) $i(d) = BEq |i(d ) (Z d;) | + BEa |diu (Z d;> |d]
i=1 i=1 i=1
or, using our new functions
ld) = gild) + 8 [ f(d)aF(dd) (EE)

Note how useful it was to define the two functions: we can now treat the dividend gain
as a separate payoff, while the price (which is what we want to get to) is treated as the
argument of what appears to be conspicuously similar to a typical dynamic programming
functional equation. Also, the above equation is economically meaningful: the price of the
asset today (weighted by utility) should equal the value of the dividend that the asset will
generate next period plus the gains from the right to resell the asset next period. That
is, the price should reflect fundamental (dividend) and capital gains. Once we obtain the
function f;(d), it is straightforward to retrieve the price of the asset as

fi(d)
u' (i di)

So, the only thing standing between us and the pricing function is whether or not it is
possible to retrieve f;(d) from the above functional equation. If we could define f;(d)
as the fixed point of a contraction mapping on the space of continuous and bounded
functions, all would be well. The problem is that this is not immediate: we have no idea
whether ¢;(d) is bounded (boundedness of instantaneous payoffs is crucial in establishing
that 7" is a self-map on C'B(X)). It is continuous by assumption: continuous differen-
tiability of u implies continuous marginal utility, and the conditional expectation of a
continuous function with respect to F' is continuous, by assumption. It remains then to
check whether g;(d) is bounded or not.

¢z‘(d> =

Lemma 1.2.1. If " < 0, w(0) = 0 and u(c) < B € R, then (EE) has a unique,
continuous and bounded solution.

Proof. All assumptions to the lemma follow from the assumptions we imposed earlier on
the primitives. From the fact that u is concave, we have that

u(z) < ule) +u'(c)(z —c)
for any x. In particular, for x = 0 we get that
0=u(0) <u(c)—cu(c) < B—cu'(c) = cu'(c) < B
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Thus cu/(c) is bounded. This then means that, in particular, since d; < Y7, d; for any
particular ¢, that dju’ (> | d;) is bounded by some number, say B. Then it follows that

d) < ﬁ/BdF(d’,d) = BB < 0

Thus g;(d) is bounded.
Standard dynamic programming arguments now apply: define the operator 1" as

TH(d) = gi(d) + 5 / f(d)dF(d’ d)

From the fact that g;(d) is both continuous and bounded, and from our assumption that
the conditional expectation with respect to F' preserves continuity, it is immediate to see
that T is a self-map on the space of continuous and bounded functions endowed with the
sup norm, with X = R (the space of dividends). It is also straightforward to see that T
satisfies monotonicity and discounting, for 5 € (0,1). Thus it is a contraction mapping
in a complete metric space, hence it has a unique fixed point f;(d). Furthermore, this
fixed point is continuous and bounded by construction. O]

An economic rationale for the iterative procedure that leads to a unique pricing function
can be provided: think of an economy where agents have heterogeneous beliefs or percep-
tions of how dividends evolve, and what is their distribution. They will naturally price
the asset in different ways. However, as time passes and these agents observe the suc-
cessive realisations of dividends, they eventually learn the true distribution of dividends
and a unique price perception function arises. Also note that nothing else regarding the
pricing function can be said, without further restrictions on the primitives.

1.2.6 Examples
Example 1 - Linear Utility

Assume that u(c) = ¢. In this case, v/(¢) = 1, so that ¢;(d) = f;(d). The pricing function
is then easily characterised. From the Euler Equation:

¢i(d) = BEq (dj|d) + SEa [¢i(d')|d]

Iterating forward and replacing leaves us with

ZB E 0 [d"|d] + 5" Eqgoo[¢:(d™)|d]

where the Law of Iterated Expectations is repeatedly applied. Taking the limit as n — oo
we obtain

Zﬂ E 0[d;"1d] + lim 5"Eyon [¢:(d™)]|d]

11



Now, the last term is commonly disposed by assuming a no bubbles condition or making
use of a Transversality Condition. We will see this in more detail later on. For now,
it is sufficient to note that if ¢ is bounded, then its expectation is bounded, hence as
lim,, ,., 8" = 0, the limit term is equal to zero. Thus we are left with the familiar asset
pricing equation: price equals the discounted present value of dividends

¢i(d) =) BEyld”|d
s=1

Example 2 - Single Asset, iid Returns

If there is a single asset in this economy, there is a single dividend as well, hence ¢ = d.
This allows us to write the Euler Equation as

wwww:ﬁ/wwwwwwwm&@

If, furthermore, returns are iid, then the conditional expectation becomes an uncondi-
tional one, as the distribution of dividends next period should not depend on the value
of dividends this period. That is, F'(d',d) = F(d'). Thus

C(@o(d) = 5 [ (@) + d1IF@)

Notice then that the RHS does not depend on d (the state) in any way - it is a constant,
A.

u(d)o(d) = A
This should also hold for all periods (as the problem is stationary). Hence we have that

A=3 / u(d)(d)dF (d) + B / u'(d)d'dF (d)

_ 3 / AdF(d) + 3 / () dF(d)
B[ W(d)ddF(d)

A
= =5

and then

od) = | gi’f(‘fl' ))d/dnd/)

Note that the price is equal to the present value of an infinite stream of dividends,
discounted at a stochastic discount factor. This expected value is constant as returns are
iid! If, for example, we assumed log utility, then we would simply get

o) = 25
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1.2.7 Properties of the Price Function

Let us stick, for now, to the one asset case. We are usually interested in exploring
certain properties of asset prices, such as how they change when dividends, risk aversion
or volatility change. Their reaction to changes in dividends can be computed as an
elasticity. In the iid case, the price is equal to a constant divided by u'(d), hence this
price-to-dividend elasticity is simply

J(d)d _ u'(d)d
o) — w(d)

equal to the Coefficient of Relative Risk Aversion. Thus the result is straightfor-
ward: the more risk averse people are, the more the price of the asset increases vis-a-vis
an increase in dividends. This may sound counter-intuitive: after all, dividends are iid,
so high dividends today do not predict high dividends tomorrow, so why are people buy-
ing the asset? The reason is linked to the lack of alternative saving instruments in this
economy: if people are risk-averse, then an increase in dividends does not cause a large
increase in consumption, as people would prefer to save. However, the only way to save
is by purchasing the asset. Thus, faced with a temporary increase in income, agents flock
to save and purchase the asset, raising its price.

Let us consider now the general case in which returns are not necessarily iid. From the
fact that

we easily obtain that

¢'(d)d _ f'(d)d u"(d)d

o(d)  f(d)  (d)
The first term was absent in the iid case because f(d) was a constant, hence f'(d) = 0. It
is known as the information effect, and embodies the information that current dividends
have regarding future returns for the asset. If current dividends are very good predictors
of future returns, this term will tend to have a relatively larger importance. Naturally,
in the iid case current returns carry no information regarding future returns, hence this
term was zero. The second term is the risk-aversion effect, with the same interpretation
as before. Note that the above expression raises a fundamental question: in the general
case, what sign should we expect for the price to dividend elasticity? In general, we
have no idea on what should the sign of f'(d) be (even though we naturally know that
d, f(d) > 0), and the result crucially hinges on the sign of this term. Fortunately, we can
get some structure by imposing further assumptions.

Lemma 1.2.2. Let F' (the transition function) be differentiable and satisfying 0 < —Fy <
Fy. Consider any function (x) with 0 < ¢'(z) < ¢}, for all x (i.e., its derivative is
bounded above). Then

d ! / /
os@/¢@mm%wst
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0 < —F;, < F; means that dividends are positively autocorrelated: if dividends are high
today, F5 < 0 means that the probability of getting higher dividends tomorrow increases
(as, for the same value of today’s dividends, the mass to the left decreases). The idea is
to retrieve the sign of f’(d) from our original functional equation

£(d) = g(d) + 8 / F(d)dF(d, d)

by imposing restrictions on the function g(d). Recall that

g(d) = B / du/(d)dF (d, d)

If we can impose bounds on ¢'(d), we may be able to bound f’(d) as well (golden rule of
dynamic programming: the fixed point inherits most of the properties of the instantaneous
payoff function, so it’s not surprising that when utility is concave the value function tends
to be concave as well, etc.). Our aim is to use the above lemma on du/(d). Note that the
derivative of this term is

9
ox

zu" (z)

u'(x)

[zu/(2)] = o' (z) + 2" (x) = W' (2) [1 + } =u'(z)[1 — R(x)]

where R(x) is the coefficient of relative risk aversion. If we manage to show that the
above term is bounded, then we can proceed.

Assumption 1.2.4. Marginal utility is bounded, b < u'(x) < a for (b,a) constant.

From concavity, we have that R(x) > 0. Thus the above assumptions implies that
[1—R(z)]u'(x) is bounded as well. This is not a scandalous assumption: we had concluded
before that, under bounded utility, cu/(c) < B € R. Thus v/(c) < £ € R, as consumption
is usually positive with concave utility. Without loss of generality, assume that marginal
utility is always positive, hence b = 0. Now, there are three interesting cases that must
be analysed separately: R(z) < 1, R(x) =1 and R(z) > 1. Here, we shall focus mainly
on R(z) < 1 which, note, is the case in which individuals are less risk averse and, hence,
utility tends to be less concave. The lemma then implies that if [1 — R(z)]u/(z) € [0, a]
(which is ensured by our assumption on marginal utility and R(z) < 1) we have that

9(d) =5 [t = R (@) d) = g (@) € b,5a
That is, ¢’'(d) is bounded. This allows us, then, to determine bounds on f’(d), as
LTf(y) = g) + -5 / FY)AF (Y y)
dy dy ’

(where I changed dividend notation to y to avoid confusion). Noting that we seek to
impose bounds on the derivative of the fized point, we can take advantage of the fact
that T' is a contraction mapping and adopt an iterative procedure: start with some guess
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fo(y). Let fi(y) = T*fo(y). Standard properties of contraction mappings tell us that
limg oo 7% fo(y) = f(y). Therefore, start with fo € CB(X) and note that

f10) = Tho(y) = 9(y) + 3 / fols)AF ()

and

faly) = T (v) +B/ +[J’/fo NAF(y",y A, y)

Proceeding with the iterations

+258/ VAFO. ) + 8 [ ) aF )

where we define
F®I(y y) = /F(y’,Z)dF(k)(z,y)

That is, the distribution k + 1 periods ahead. We know that, by taking the limit as
k — oo, the LHS becomes the fixed point (what we are interested in). Does the second
term go away? Yes, as fo was assumed to be a bounded function! Thus our fixed point

f satisfies
+265/ NdF (Y, y)

Taking derivatives with respect to y

' +253/ NAFO ()

Now, recall that, from our lemma (assuming, of course, that 0 < —F, < Fj, as all other
assumptions are satisfied by the restrictions imposed on the primitives) since ¢'(y) is
bounded we have that

—/ "NdF(y,y) < Ba

Similarly,

d%/g(y’)dF(z)(y’,y) = d%//g(y”)dF(y”,y’)dF(y’,y) < /ﬁadF(y’,y) = fa

and, more generally, for any s

9(y")dF) (Y, y) < Ba

dy

Thus
, — osp  Pa
f(y)Ssz;ﬁﬁa—l_ﬂ
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Furthermore, the lemma can also be applied ”from below”, as ¢'(y) > 0, the same logic
applies to establish that

Thus we have bounded f'(y) € [0,Ba/(1 — B)], for the case in which R(x) < 1. This
accomplishes our objective as, then

Telling us that the price of the asset will be procyclical. Should we expect this? Yes:
if there is positive autocorrelation in dividends, higher dividends today imply a high
likelihood of high dividends tomorrow. Therefore, as consumers are not 'too much risk
averse’, they flock to buy the asset and its price increases.

What if R(z) > 1, so that consumers are more risk-averse? In this case, it is possible to
show that for some lower bound b we will have

Hence the result regarding the sign of the elasticity becomes ambiguous: agents are
extreme consumption smoothers, and they know that if dividends are high today, they
will tend to be high in the future. Therefore, they sell excess asset holdings, driving the
price down. On the other hand, they are risk-averse and want to insure consumption,
thus there is also a motive to purchase the asset (as it is the only vehicle for savings in
this economy). Finally, if R(z) = 1, it is easily seen that f'(y) = 0 and the information
effect disappears. This is the case, for example, with log utility, in which income and
substitution effects cancel each other.
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1.3 Mehra and Prescott 1985 - The Equity Premium:
a Puzzle

Between 1889 and 1978, the average return on equity was of about 7%, whereas the aver-
age return on riskless bonds was of 1%. Thus there was an average equity premium. of 6%,
in terms of returns. This difference in returns is rather hard to explain with standard,
Arrow-Debreu economies: if there is such a large difference in returns, why have people
been holding bonds at all? The natural explanation for this phenomenon involves risk: eq-
uity is much risky than bonds, hence the premium. However, standard Walrasian models
with standard utility and market structure assumptions require implausible high degrees
of risk aversion in order to replicate a premium of this magnitude. The level of risk aver-
sion that is compatible with the equity premium is several orders of magnitude greater
than the degree of risk aversion that is usually found in micro data, from experiments, etc.

Mehra and Prescott investigate the causes of this puzzle using a very simply model,
inspired by the Lucas Tree model but with some key differences.

1.3.1 Environment and Model Set-up

As said, the model is very similar to the Lucas 1978 model. A key difference, however,
is that while Lucas worked in a stationary environment, the authors sought to replicate
US economy behaviour for a century. Therefore, they needed to incorporate growth in
the model, modeled as growth of endowments, or dividends of the stock.

Endowments/dividends grow at a stochastic rate each period. Let d; denote the
dividend at time ¢, and x; its growth rate. Then

dip1 = Tyq1dy

where x;41 € {71,...,7.} takes values in a finite state space. The growth rate of the
dividend is modeled as a Markov Chain P where

IP(%H = %"ft = %‘) = Dij

Preferences are time and state separable as in the Lucas model. Instantaneous utility
is assumed to be CRRA

1—0_1

ul(e) = l1—0

with o € (0,00) and 8 € (0,1) as the discount factor.

In terms of market and asset structure, there is a single risky asset, a Lucas tree, that
pays a dividend as described above. There is also a one period risk-free bond, that pays
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one unit of consumption with certainty. It is assumed that initial dividends are positive,
dy > 0, and that gross growth rates are always positive as well, v; > 0,Vi. This implies
that dividends will always be non-negative. d; is observed at the beginning of each period,
before any trades are undertaken. It is also assumed that the matrix M = [m;;], where

mi; = Bpiy; 7

is a stable matrix, in the sense that all of its eigenvalues are inside the unit circle. This
implies that

lim M* =0

k—o0
Finally, P = [p;;] is assumed to be ergodic, so that p;; > 0,Vi, j. Ergodicity of P ensures
that any random variable defined as a deterministic mapping of x; (the state variable)
has a well defined theoretical mean. Not only this, but the time average of that variable
converges in probability to its expected value. That is, for any y; = 2,5 we will observe

T

1

T Z Y —rp E(yr)
t=0

where E(y;) is well-defined.

1.3.2 The Individual Problem

As in Lucas, Mehra and Prescott adopt a representative agent formulation. The sequence
problem can be described as

max Eq Z Blu(c) (5P)
feaiiq1,a813820 t=0

subject to

¢+ Gjag .y + dlal, = (67 + di)a + af
Ct Z 0
aiﬂ >0,1=s,b
where all variables with s superscript refer to the stock and with the b superscript refer
to the bond. Expectations are taken with respect to the sequence of dividend growth

rates, {z:};°,. Assuming an interior solution, the (necessary) First Order Conditions
with respect to stock and bond holdings are

gy u' () = 5Et[ul(ct+1)<¢ts+1 + dy11)]
a?—&-l : u/(Ct)d)f = BB’ (cr41)]

Note that the two conditions are essentially the same: in the case of the bond, there is no
dividend and the resell value is normalised to one unit of consumption in prices at ¢t + 1.
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1.3.3 Equilibrium and Prices

In a representative agent framework with monotonic preferences, the goods market clears
trivially by feasibility
Ct = dt, Vit 2 0

This condition can be replaced in the FOC’s, so as to transform them into functional
equations that may allow us to extract pricing functions, as in the Lucas setting. In
particular, for the stock we get

u'(d u'(d
o} = P, ((;)1) di1 + P <(t+>1) Piia
Replacing recursively leaves us with
(dt-‘rn)

= I, Z 5J tﬂ ——dyy + ﬁn Gtin

u'(dy)

Taking limits as n — oo and assuming no bubbles (so that the price is bounded and
the last term vanishes), we obtain a typical present-discounted value of dividends asset
pricing equation

d
= E, Z 5] t+j — i

Mehra and Prescott seek to find a Recursive Competitive Equilibrium, where the problem
can be described as a stationary one. In a RCE, as we have seen with Lucas, prices are a
function of the state variables. However, while in the stationary Lucas environment, the
only state variable was the dividend, now we must also account for the growth rate (as its
current value helps us in predicting the future). Therefore, they postulate the existence
of a function ®° such that

¢t q)s (‘/Eh dt -

d
Z ﬁj tﬂ — il T, dt]

Given Mehra and Prescott’s assumptions on utility, the stochastic discount factor can be
handily computed as
W (dyg) _ (i)a
Ul(dt> dtJrj

Why is this useful? Because it makes the pricing function homogeneous of degree one in
dividends. Noting that

dt+1 = $t+1dt

we have that

J
dt+j = th—‘ridt
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That is,

(I)S(ﬁt,dt) = Et Zﬁ] (dt ]) dt+j|xt7dt]
7 3
- ]Et Z /Bj (H] 1 It-i—ldt) H xt+idt|xt, dt]

=1

= diIE, Z 63 ( . $t+z) H It+z|$t7 dt]

=1

o j l—0o
= diIE, Z 5j (H $t+z’> |$t
| =1 i=1

Note that the growth rate is independent of the level of dividends (it only depends on
its own past value, given that it is modeled as a Markov chain). This means that the
utility specification allows us to express the price of the asset as a constant (which is
state specific!) times the dividend.

This motivates the following definition: let ¢*(d, i) = ®*(zy,d;) when d; = d and z; = ;.

Note that everything we need to price the asset is summarised on the current state and
the level of the dividend.

This given, the Euler Equations for prices can then be written, with recursive notation,
as

d~7¢*(d, i) 521% %d) 7 [¢° (5d, 5) + ;)

U¢b d Z szz] P)/J -

where, note, we take advantage of the Markovian structure of the endowment process,
which allows us to explicitly compute the expectation. <;d, given today’s endowment
d is tomorrow’s dividend when the economy is on state j. Canceling the d~7 term and
rearranging leaves us with neater price functions

szzg% *(3d, ) +d]
=p Zpiﬂfa
j=1

Note that the price of a risk free bond is independent of the dividend level d. It depends
only on the current state (through the transition probabilities). Thus there will be as
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many bond prices as states: n in our case. There are, then, n possible values (at most)
for the risk-free rate, which is defined as

Ry (i) !

0]
A similar ’trick’ can be performed with the stock price. Recall that we have established it

as being homogeneous of degree one in the dividend level. This means that ¢°(d, i) = d¢;
for some constant ¢;,Vi. Thus we can rewrite the stock pricing equation as

gid =B pijy; [O5vd + vyd]
j=1
Allowing us to eliminate the dividend level to obtain
6 =5 piyyy (05 +1)
j=1

Thus we have n constants ¢;, each of them described by an equation which depends on
those n constants. Therefore, we have just obtained n equations for n unknowns, totally
describing the stock prices ¢* = (¢%,...,¢?). So, in some sense, the reasoning is parallel
to that of the bond prices: even though stock prices are not independent of the level
of dividends, they will be equal to a constant times the level of the dividend, and that
constant depends only on the current state. Thus, in some sense, there are also n possible
prices for the risky asset.

We now proceed to solve this system. We can write equation ¢ of the system as

¢; =0 Zpiﬂ;_a¢§ + Zpiﬂ}_a

j=1 j=1
Stacking over ¢ leaves us with a system in matrix form
o°=Mo®*+a
where ¢° isn x 1, M is n X n and a is n x 1, described as

M = [mi;] = [Bpij; ]

a=la] =B Zpiﬂ}_”]

Now, if I — M is nonsingular, we can solve the system as
¢°=(I—M)"a

Do we have invertibility of that matrix? Note that
(I—M)"=> M
=0
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and, by assumption, limy_. M* = 0. Any geometric sum satisfying this converges 3.
Thus the inverse exists and is finite, allowing us to solve the system for the vector of

price constants.

1.3.4 Asset Returns

Let rj; denote the return on equity from state ¢ to state j. It is constructed as

s _ P (ydg) +yd 0+ 9))

r.o. =

K ¢(di) @

where the second to third equality take advantage of homogeneity of the price on d. Thus,
as we could somehow expect, equity returns do not depend on the level of dividends.

The conditional return on equity at state i can then be computed as

S S - S 1 o S
R} = E(rjj|lz, =) = sz'j% =5 Zpiﬂj(l + %)
=1 i =1

As we have seen, the return on bonds depends only on its current price which, in turn,
depends only on the current state. Thus we can automatically obtain the conditional
return from the current price:

P 1
Cob(dd) B Py

Unconditional returns can be simply obtained by averaging conditional returns at
each state using, for example, the stationary distribution of P. The transition matrix
is ensured to have a unique stationary distribution given our ergodicity assumption of
pij > 0,Vi,j (Ljungqvist & Sargent, p. 33). Given the stationary distribution 7 satisfying
7’ = 7' P, unconditional returns can be obtained as

R = zn: ﬂ-zRf
i=1

R’ = Xn: ™R}
i=1

The equity premium can then be computed as E = R® — R’

30bviously, this is not true in general. This is a specific feature of geometric sums, and emanates from
the fact that convergence in a geometric sum is equivalent to the common ratio being strictly within the
unit circle, r € (—1,1). But, this is equivalent to lim, . ™ = 0.
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1.3.5 Model Calibration and the Equity Premium Puzzle

Calibration involves assigning values to the deep parameters of the model. In the Mehra
and Prescott environment, calibration involves assigning values to the following elements:

1. Preferences - The discount factor $ and the coefficient of relative risk aversion o.

2. Technology - The values that can be taken by the growth rate of the dividend,
{7}, (note that this involves choosing a n as well), and the associated transition
matrix P.

In their article, M&P assume two states: a low growth state (or recession) and a high
growth state (or boom), v € {7r,vg}. They specify vg =y, = F+d and v, = 75 = 7—9.
The transition matrix is assumed to be symmetric

Pl
L—p  p

Calibration of the parameters describing the endowment process, (7,9, ) can now be
achieved by taking the average growth rate of consumption, the standard deviation of
consumption and the first order autocorrelation of the consumption process, respectively.
Calibration can be undertaken through the method of moments:

E[Ey1] = Zm Zpiﬂj =7
=1 j=1

V(v) = E[E(ye11 — %)% = Zﬂ'i ' pij(v; —7)* =&

=1 7=1
Cys y41) = (20 — 1)6°
Using US data, M&P assign

7 =1.018
0 =0.036
20 —1=-0.14 = 1 =0.43

using yearly data on consumption growth.

How to calibrate the preference parameters (5,0)? In principle, one should pick values
for those parameters that would yield results that are consistent with the data (now that
we have explicit formulas for the returns on stocks and bonds). However, it turns out
that this is not an easy task: for standard values of the discount factor, the following
table summarises the results generated by different choices of o, the coefficient of relative
risk aversion

Clearly, no acceptable levels of relative risk aversion yield the equity premium that is
observed in the data. Furthermore, and noting that £ is increasing in o, but is also
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Table 1.1: Returns and Equity Premia for Different levels of risk aversion

RS Rb RS — Rb

o
11283 | 2.70 0.13
2 | 4.58 | 4.30 0.28
3| 6.27 | 5.79 0.48
4 | 789 | 7.18 0.71
5 | 942 | 845 0.97
6 | 10.88 | 9.62 1.26
7 | 12.24 | 10.67 1.57
8 | 13.52 | 11.60 1.92
9 | 14.70 | 12.41 2.29
10 | 15.79 | 13.10 2.69

associated with increasing average returns on R® and R?, attaining an equity premium of
6% would require unconditional returns on both stocks and bonds that are considerably
larger than those observed in the data.

The equity premium puzzle, the inability of standard models to replicate this return
differential is associated with another closely related inconsistency (between the model
and the data): the risk-free rate puzzle. For agents to be willing to hold a significant
amount of bonds, in the model, they demand a rate of return that is much higher than
1%, so how come people are holding bonds in the first place?

The main problem is associated with the fact that the parameter ¢ plays, in fact, a
double role: on the one hand, it represents the coefficient of relative risk aversion, how
much consumption is the individual willing to trade across states of the world. Therefore,
as o increases, the individual prefers to move away from stocks and prefers to buy bonds.
In equilibrium, this means that the price of stocks will decrease and R* 1. However,
o is also the inverse of the Elasticity of Intertemporal Substitution: how much
consumption is the individual willing to trade across periods. Therefore, as o 1, the EIS
decreases and the individual becomes less willing to trade consumption across periods.
Thus, to induce more saving, the price of the bond must go down and R’ 1. This is the
main cause of the 'puzzle’.

It is then clear that, to solve this issue, one should be separating these two motives:
risk aversion (consumption across states of the world) and intertemporal substitution
(consumption across periods). This is achievable, for example, by using Epstein-Zin
Preferences, which are able to parametrise risk aversion and the EIS independently. The
main problem with these preferences is that, analytically, they can prove to be extremely
cumbersome to work with, making several models (even simple ones) intractable.
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1.4 Other Approaches to the Equity Premium Puz-
zle

Ever since Mehra and Prescott’s article, the equity premium puzzle (EPP) has been thor-
oughly studied by economists. In particular, a large effort has been devoted to attempts
at reconciling the EPP with standard, simple asset pricing and macroeconomic models.

1.4.1 Kocherlakota, 1996 - The Equity Premium: It’s still a
Puzzle

A simple test for Mehra and Prescott’s claims regarding the existence of several puzzles
can be undertaken by imposing very little structure on the model, and using readily avail-
able data. Recall that, for a generic asset pricing model, the Euler Equations describing
equity and bond prices could be written as

Now, let R! 41 denote the return on asset i = {s,b}, as defined in the previous section
(gains at ¢t + 1 divided by price at t), and define the stochastic discount factor (relative
to period t) as

The Euler Equations can then be rewritten in terms of returns and the stochastic discount
factor

U (Cq1) Gfyq + digr
1=E =EM R’
tﬁ ul<Ct) ¢§ tAVEt+14
u'(cip) 1 b
1=E — =M, R
tﬁ 'U/(Ct) gbé) t t+14¢41

Subtracting the two, one from the other, gives us an indifference, or non-arbitrage, con-
dition for the two assets
Ee My (R7 — R?—i—l) =0

In the margin, an optimising investor should be indifferent between putting his or her
own money in the stock or in the bond, and the returns should be utility-equivalent,
once adjusted to risk by the stochastic discount factor. Furthermore, and regardless of
the composition of his own portfolio, the investor should be indifferent between saving
and/or eating an additional unit of consumption

EM R, —1=0
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These two (conditional) moment restrictions can be tested using the data that is available
on bond and stock returns. Constructing the stochastic discount factor does, however,
require specification of an utility function (if we assume CRRA preferences, for example,
everything that is needed is data on consumption growth). In general, and for very agnos-
tic utility specifications, the data tends to reject the above two restrictions. Kocherlakota
(The Equity Premium: It’s still a puzzle, 1996, JEL) rejects both restrictions using US
data. In particular, he finds that

E My (R — Ry) >0

EM 1R, —1<0
Given what we know, the first inequality should be expected: it is nothing more than the
equity premium puzzle, once again. Even when adjusted for risk and the stochastic dis-
count factor, the return on equity tends to significantly exceed that of bonds. Regarding
the second inequality, it is indicative of the risk-free puzzle: it indicates that individuals

are saving too much: the marginal benefit of savings exceeds its cost, and individuals are
over-investing in bonds.

1.4.2 Abel, 1988 - Stock Prices and Dividend Risk

This article changes slightly the Mehra and Prescott set-up by assuming that the growth
rate of dividends, instead of following a Markov Chain, is iid and lognormal. The author
also abstracts from specifying a process for endowments, and specifies a direct exogenous
process for consumption growth (this will not make much of a difference in a representative
agent framework, as we should expect). Starting from the standard Euler Equations in
an environment with the same market structure (perishable good, one risky stock and
one risk-free bond)

u'(ce)d; = BE[u (co1)(Df + diy1)]
ul(ct)ds) = BE[u'(cry1)]

The author makes the following assumptions

1. Utility is CRRA, u/(¢;) = ¢, °.

. C .
2. Consumption growth follows an exogenous process, ¢;41 = e%+1¢;, where g7, is a
random variable.

.. d .
3. Dividends also follow a random growth process, d;11 = e%+1d;, where gfﬂ is a
random variable.

4. (gfiq, g y) is aiid vector (over time) and jointly normal, with parameters (uc, fta, Se, X, p)-

Let vp,, = e%it1 for i = ¢, d denote the gross rate of growth. Given these assumptions,
we can write the Euler Equation for the stock as

o7 = 5Et[(7§+1)70(¢f+1 + di11)]
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and, just like in Mehra and Prescott’s model, stock prices will be linear on the current
level of dividends. To see this, assume that ¢; = wd, for some constant w. From the
Euler Equation, we can easily confirm that

wd; = BEt[(%chl)_gdtH(l + w)]
S w = BE[(71) (1 + w)vi 4]

_ BEt[(%CH)fG%dH]
I RN AT B

Given that (75, 1,74 ) is a deterministic mapping of two jointly distributed random vari-
ables that are independent across time, we can simply remove the ¢ subscript from the
above expectations and treat them as constants. Thus w is indeed a constant, and prices
are indeed linear on the level of dividends. Furthermore, while in Mehra and Prescott, we
were happy at this point (to determine the constants that multiply the level of prices),
we can now go even further, by using the assumptions that were imposed on the process
for growth rates. This allows us to more deeply investigate the underlying motives of the
equity premium.

So far, we have not touched the subject of goods market equilibrium. Clearly, in equilib-
rium, we must observe ¢, = d;. This implies that vy, , = thﬂ for all ¢ and, consequently,
these two random variables are the same: . = g, 2. = 34, p = 1. Letting 7,11 denote
the growth rate in this economy, we can write

BE[y;7]
1 — B[]
And, using the properties of the lognormal distribution, from the fact that log~y ~
N (11, %?) we have that

1
E(y'77) = exp (1= o)+ 5(1 —0)*%

This allows us to derive a closed form for the price of the stock:

oo Pew[i-ourii—oPe
T Few (= ot Ji—or]

The bond price is also easily derived:

—0
Ct+1
Ct
and note that it is constant over time, in opposition to the Mehra and Prescott case, in
which it depended on the current state. This is a consequence of time-independence of

dividends: given that the current state does not help predict the future state (while in
the Markovian environment, it did).

¢ = BE — BE(y™") = fexp {—au N 10222}

2

Some remarks are then in order:
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1. If o =1 (log utility), then we get

] 8
¢t =
1-p
Exactly the same result we obtained in the special case of iid dividends in Lucas
8.

dy

2. How does the stock price react to changes in the average growth rate, u? Note that

001 _ 1o

S

O '1—Bexp[(1—o)u+i(1—0)2%2]

Given that the term in the denominator is positive (as otherwise, the price of the
asset would be negative, thus this is in fact a regularity condition that must be
satisfied by the parameters), the sign of the term will depend on whether o > 1 or
o < 1. Thus, if agents are risk-averse, o > 1, the price of the asset will tend to
decrease. Why? Recall that o doubled as the EIS: thus agents with a high ¢ have
a low elasticity of intertemporal substitution and prefer rather stable consumption.
Therefore, if the growth rate of the economy increases, they do not need as much
of the asset in order to stabilise consumption, thus they sell the asset. Besides,
selling the asset makes them less exposed to risk. If agents do not care about
consumption smoothing, o < 1, then they flock to purchase the asset as dividends
are expected to grow faster. If o = 1, there is no effect: under log-utility, the
income and substitution effects cancel with each other. Therefore, the two effects
that were described (the first is the substitution, whereas the second is the income
one) exactly offset each other.

3. What is the impact of greater growth variance, ¥ 17 Once again, note that

op; (1—0)%% .
oY '1—Bexp [(1—0)/1—1—%(1—0)222} -

The term is strictly positive unless ¢ = 1. This is counter-intuitive, especially if
o > 1. We would expect risk-averse agents to flee from the risky stock as the
variance of its dividend rises, and the price to go down. However, recall that this
is also the variance of the consumption process. Therefore, agents feel the need to
insure more as the variance of consumption increases. Insurance is only obtained
through the risk-free bond and the risky asset. However, the price of the risk-free
bond will rise much more, hence some agents are left to purchase the risky asset in
order to save (this can be checked analytically).

4. What is the direct impact of risk aversion ¢ on prices? It can be checked that

- (%‘i ) — —sgnlpi— (o — 1)

This, naturally, will depend on the value of ¢ and on how the average growth rate
compares to its own volatility. Note, however, that for a very high 3, regardless
of o0 and p the derivative will tend to be positive, highlighting the precautionary
motive for saving.
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In terms of returns, we also obtain closed forms:
I 1
¢  Bexp [—op+ 10232
i+ d 1 d 1
s Pl td (1+w)dia _ (1 n 5) -

b _
Rt+1 -

t+1 — §Z5f - Wdt
As we would expect, the return on bonds is constant (as its price is constant). Further
note that the return on equity depends only on the growth rate of dividends, not on their
level. Therefore, the conditional return will be equal to the unconditional return (i.e. will
not depend on t):

E.RS . — |
T Bexp [(1—=o0)p+ 3(1 — 0)2%?]
_ exp [ + 53]
Bexp [(1—o)u+ (1 — 0)?%?]
o

|
= ;o [au +2(2- 0)22] —ER},,

We are now ready to look at the implications generated by this model for the equity
premium. Note that instead of looking at the difference, we can rather analyse the ratio
of the returns between stocks and bonds. Or, rather, as it is conveniently suggested by
our functional forms, at the log of the ratio:

1
log ER;,, = —log B+ opu+ o%* — 50222

1
log Rfﬂ =—logfB+ou— 50222

The expression for the log return on the bond is very transparent in the sense that it
explicitly decomposes all of the effects that are at play in determining prices/returns: first
comes impatience, the log of the discount factor: as it increases, people save more and
the return on the bond goes down (as its price increases). Then, the average growth rate
of dividends has a positive impact on the return: as dividends grow faster, the first-order
effect is the income one, people move away from the bond and towards the stock. To
compensate for that, the price of the bond comes down and its return increases. Finally,
we have the second-order, or substitution effect: as volatility rises, people prefer the bond
to the stock, thus its price increases and returns decrease.

The equity premium can be computed as the difference of the logs, which is simply:
log(EP) = o%?

The extra term in the expression for the log of equity returns. Once again, we extract
the root of the premium: since equity is risky, it must pay an excess return over bonds.
In the case of this model, this is linear in risk-aversion!

In terms of calibration, note that we have data for everything except for o. Thus we stand,
roughly, on the same grounds as Mehra and Prescott. The author sets R, ; ~ 1, thus its
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log is approximately zero. The expected return on equity, as in Mehra and Prescott, is
approximately 7%. The standard deviation of the growth rate of consumption is set as
Y2 = (0.00362. This allows us to solve for ¢ in

log ER;,, —log R, | = oX?

generating o = 52 as a requirement for obtaining an equity premium of 7%. Naturally,
calibration suspicions fall on the value taken by 32, which appears to be too small in our
case. In order to obtain an acceptable value for the coefficient of relative risk aversion,
say 0 = 2, we would need consumption to be 26 times more volatile in the data than it
actually is!

1.4.3 Hansen-Jagannathan, 1991 - Constructing empirical bounds

Hansen and Jagannathan (Implications of Security Market Data for Models of Dynamic
Economies, 1991, JPE) go even further, by imposing even less structure on the model.
Instead of assuming a particular functional form for utility, they rather work with a very
general discount factor in a generic asset pricing setting, and try to recover from the
data reasonable properties that a SDF should satisfy to be consistent with real data.
The assumptions imposed on the SDF correspond to very loose assumptions on utility:
concave, time and state separable, etc.

1. Sharpe Ratio based Bounds

The asset pricing Euler Equations can, as we have seen, be written as
EM R, =1

for i = s,b. In particular, given that the bond is risk-free, its return at ¢ + 1 depends
only on its current price, hence is known at ¢. This allows us to remove the bond return
from the conditional expectation and write it as

1
E M = RTl
t+

For the equity equation, we can use the covariance formula to expand the expectation
into
ER; (EMq + Ci(Myg, Ry ) =1

So that, using the fact that the expected value of the SDF equals the known inverse
return of the bond, we can rearrange to obtain an expression for excess returns:

Ct(MH—lv Rf—l—l)
B, M

S b _
E Ry — Riyy = —
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This simple (and extremely agnostic) derivation is extremely enlightening: why is there
an equity premium to begin with? Clearly, we can only expect stocks to yield greater
returns than bonds if the covariance term is negative. What does this mean? If there
is negative covariance between the SDF and the stock return, this means that the stock
tends to yield high returns when the SDF is low. But the SDF is low when future marginal
utility is high with respect to the current period - that is, when future consumption is
high. Thus the stock is an extremely bad form of insurance: it yields high returns
when consumption is high (and, therefore, high returns are not needed). The stock is
a procyclical stock, does not allow hedging against bad periods, hence agents demand a
premium to hold it!

The covariance formula tells us that

0t(Myy1)oe(Ri 1) pe(Miy, iy y)
Ey My
where o; are conditional standard deviations and p; is the conditional coefficient of cor-

relation. Rearranging the expression, dividing both sides by the standard deviation of
equity returns, leaves us with

s b _
ER, — Ry =—

S b
ER — Ry

oy ( ?-5-1)

Ut(Mt+1)
B M 41

= _pt(Mt-‘rl? f+1)

The LHS of the above expression, the excess return of the stock with respect to the risk-
free rate divided by its standard deviation is known as the Sharpe Ratio - the higher
the better, as it means that the security pays a higher return at less risk. The term on
the RHS, that multiplies the coefficient of correlation, can be seen as the market price
of risk: the standard deviation of the SDF divided by its expected value, which is the
same as the risk free rate multiplied by the average risk in the market! Given that the
coefficient of correlation must lie between zero and one, we can use the above expression
to impose a bound on what values are acceptable for the market price of risk:

Ut(MtH)
Ee M1

b
’EtRfﬂ - Rt+1 <

Ut(RfH)

The above condition provides us with a quick and easy to run test on whether a SDF
derives from reasonable assumptions or not: the LHS, the Sharpe Ratio, can be easily
computed from the data. Thus a reasonable utility specification (generating a reasonable
SDF') should satisfy the above condition. If the model is not consistent with it, then the
model is not likely to ever be consistent with the equity premium that is observed in the
data. Considering that some securities can have extremely high Sharpe Ratios, a SDF
should be volatile enough to account for this. It should be noted that the utility specifi-
cation and calibration adopted by Mehra and Prescott violated the above condition.
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2. Alternative Specifications for the Bounds

Consider a more general framework with n securities. The asset pricing equations for
each security impose that I5,M; ;12441 = 1, where z;,1; denotes the return on the ¢-th
security. This equation, as we know, should be valid for any SDF and time and state
separable utility specification. Now, consider the projection of the SDF on the returns of
the n securities, that is:

M=a+bzxi+...+ by, +¢

or
M=a+Vzx+e¢

This projection problem can be solved as

min E[(M —a — 1)’

From convexity of the above function, the following FOC are both necessary and sufficient
E(M—a—-bz)=0
Elz(m —a—bz)] =0

Note that the first FOC is imposing that E(e) = 0, whereas the second is C(e,z) = 0 (as
the expected value of ¢ is 0 by the first one). This is a simple linear projection exercise,
whose solution is given by

b=C(x,2) 'C(x, M) = C(z,z) ' [E(Mz) — E(M)E(x)]

From the asset pricing equation, we know that E;(M;12; 1) = 1 for any i,¢. Therefore,
by the Law of Iterated Expectations, we obtain that E(Mz;) = 1 = E(Mz) = ¢, where
x = (x1,...,2,). Thus our linear projection coefficient b can be written as

b=C(z,2) 'C(x, M) = C(x,2) [t — BE(M)E(x)]
Furthermore, by construction of our model
M=a+Vr+e=V(M)=V¥x)+V(e)+ C(z'b,e)

where the covariance term is equal to zero, by construction of the linear projection coef-
ficient and linear projection error term. Thus

V(M) >V({¥z)=bC(x,z)'b
Replacing for our expression for b, leaves us then with
V(M) > o = E(M)E(2))'Clz, )" e — E(M)E(x)]

which is known as the Hansen-Jagannathan Bound on the variance of the stochastic
discount factor. Once again, we observe that in order to be consistent with the empirical
evidence on the equity premium, the SDF should be volatile unknown, as its variance is
bounded below. For any generic M, one can use data on returns of several securities to
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construct the above bound, which must be satisfied for any SDF in a reasonable model.
The conditions gives us a lower envelope of combinations of means and standard devia-
tions that are considered acceptable by the data.

Further bounds can be constructed, based on excess returns. Take any two assets 4, j and
construct the excess returns between the two, z;; := z; — x;. The asset pricing equation
implies the following moment condition

E(Mzj) =0
for any pair of assets. The whole exercise can then be repeated to obtain
b=—C(z,2) 'E(M)E(2)
So that the H-J bound for excess returns becomes
ou = V() = [E()C(z, 2) " B(=)]/2E(M)

Note that while the previous bound on returns will tend to be a parabola (or, at least,
have quadratic features), the restriction on excess returns will be a straight line. Thus this
bound is, in some sense, less stringent than the previous one. Naturally, an acceptable
SDF should belong on the intersection of the two bounded areas.
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Chapter 2

Money in Classical Economies and
Transversality Conditions

2.1 Introduction

This section addresses the introduction of an asset without any value in an Arrow-Debreu
economy with complete markets. As we expect, in the absence of fundamental value, this
asset will not be traded at all. As we know, the value of fiat money, in OLG economies
for example, is based on a bubble. The demographic structure of these economies is such
that money acquires value by becoming a savings vehicle when no other instruments are
available: once a Lucas tree/stock is introduced in such economies, the value of money
disappears - such assets 'burst’ the money bubble. Therefore, if the structure of the
economy is such that no bubbles are possible, money can never be valued.

The discussion on money and asymptotic asset valuation also provides a good motivation
to discuss some further properties of classical dynamic problems, in particular when are
Transversality Conditions necessary and sufficient.

The environment is as follows:

1. Time is discrete and the horizon is infinite.
2. The demographics consist of a finite number N of infinitely lived agents.

3. In the commodity space, there is a single consumption good in each period. There
is no production nor storage: this is a pure exchange economy. There are no firms
nor government either.

4. Each household owns a deterministic stream of endowments of the consumption
good, denoted by €' = {e!}2,.
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5. Households have preferences over infinite sequences of consumption, ¢ = {c}°,.
These preferences are time and state separable

U(c')=>_ Bu'(c})

t=0

where the discount factor is 8 € (0, 1), and the instantaneous utility function u’
is strictly increasing, concave and continuously differentiable. Furthermore, we

impose a Inada condition
lim v (c) = oo
c—0

6. In terms of the information structure, there is no uncertainty in the model.

7. The market structure follows a standard Arrow-Debreu formulation, with time
0 trading.

2.2 Money in a Classical Arrow-Debreu Setting

Definition 2.2.1. An allocation is a sequence (of sequences) {c L., specifying a con-
sumption profile for each agent.

Letting {p;}°, denote a sequence of time 0 Arrow-Debreu prices, the agent’s problem
can be written as

max U'(c') = max Zﬁt "(eh) (HP)

c! {Cf}t 0

subject to the Arrow-Debreu budget constraint and non-negativity conditions
o0 (o9}
Zptci < Zptei
t=0 t=0
ct>0,vt >0

Definition 2.2.2. An Arrow-Debreu Competitive Equilibrium (ADE) is an allo-
cation {c¢}¥., and a sequence of prices {p;}2, such that

1. Given {p;}32,, ¢ solves (HP) for eachi={1,...,N}.

2. Markets clear at every period

N N
ZcﬁzZei vVt >0
i=1

=1
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It should be noted that the standard existence arguments apply here: for an ADE to
exist, (HP) must have a well-defined solution for each agent. This requires the time 0
value of the endowment to be finite for each agent, that is

(o]
Zptei < 00, Vi

t=0
This requirement is crucial for the following lemma:

Lemma 2.2.1. In an ADE, the value of the aggregate endowment » .~ p: ZZ L€l is
finite.

Proof. As remarked, a necessary condition for existence of ADE is that the endowment
is finite for each agent. Furthermore, note that p;el > 0,Vt,i by construction of ADE:
preferences are strictly monotonic on the sole consumption good, hence all prices must be
strictly positive. The endowments are nonnegative by assumption. Naturally, the value
of the aggregate endowment at ¢ = 0 is obtained by summing the value of each agent’s
endowment across agents. Given that we are summing N convergent series composed of
non-negative elements, rearrangements should not matter as per Dirichlet’s Rearrange-
ment Theorem. This means that we can write:

N oo oo N [e) N
DD me = 3 mei=3 m) e
i=1 t=0 t=0 i=1 t=0 i=1

given that the first LHS is finite, as it is a finite sum of finite elements, so is the last
RHS, the value of the aggregate endowment. O

2.2.1 The Value of Money

The above discussion provides us with the arsenal to prove the main result:

Proposition 2.2.1. Fiat money has no value in any ADE.

Proof. By contradiction, suppose not and suppose that there is a ADE with valued fiat
money. Let ¢, denote the (spot) price of money at period ¢. We can then write the
Arrow-Debreu budget constraint for each agent as

Zpt(ci + thi+1 Z (¢; + qimy)
t=0 t=0

The Lagrangian for an individual consumer’s problem is
L= Z Blut(cl) + N Zpt(ei +qgmi — ¢ — qmi, ;)
t=0 t=0
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The FOC being:

chu'(cl) = Npy
My DA = N'Piy1qes

We ignore non-negativity conditions on money holdings because, by market clearing, if
money is valued, then at least one agent must hold m} +1- Without loss of generality,
assume that it is the agent whose problem we are looking at. Clearly, the FOC for money
implies that

Dt = Pet1Ger1 = P, VE

Thus, aggregating budget constraints, we obtain that

Note that, as we have seen, if we ensure that all terms of a summation are non-negative,
we are free to change the order of the summation. I claim that all terms on the RHS are
non-negative. From monotonicity of preferences, we trivially have that p, > 0,Vt > 0.
Thus if we show that ¢; > 0, we are done. Assume that ¢; < 0 for some t. Then, by
monotonicity on ci, any agent will choose to hold an infinite amount of money, and this

cannot be an equilibrium. Thus ¢, > 0. This allows us then to swap the summations on
the RHS to obtain

00 N N

N o
DD pletamin) =D |p ) et pa ) m
t=0 i=1 i=1

i=1 t=0

As we have seen, in any Arrow-Debreu equilibrium, the value of the aggregate endowment
is finite. Therefore, S5° p; S0, €8 < co. From pyq = p, ¥t > 0, we obtain, however,
that

Given that mi > 0 for at least one agent. Therefore, we have that

N

Z Zpt(ci + qimiy,) = 00

i=1 t=0

or, given that there is a finite number of agents, the LHS of some agent’s budget constraint
is infinite. This cannot happen in equilibrium, as it allows for ¢ = oo for some i.
Therefore, given a fixed amount of money in the economy, we must have ¢, = 0 for at
least one t. Given that p,q; = prr1qi+1 and p, > 0, V¢, this then implies that ¢, = 0,Vt > 0.
Therefore, money is worthless in equilibrium. O

An alternative proof goes as follows:
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Proof. Once again, write the Arrow-Debreu time 0 budget constraint with money holdings

as
oo

Zpt(ci + thiﬂ Z (¢; + qmy)

t=0 t—

Or rearrange it to obtain

Zptcf; < Zptei + Ztht(miJ,-l - mi)
=0 t=0 t=0

The claim is proved if we show that the second term on the RHS is equal to zero. If the
term is equal to zero, then we establish that money does not increment the amount of
resources that can be consumed by the agent, hence has zero (utility) value. Let that
term be denoted by m‘. Assume then, by contradiction, that m’. In an ADE, physical
balance must be satisfied, that is

N N
Zcﬁ = Zei vVt >0
i=1 i=1

Since market clearing holds for any period, by Walras’ Law (as preferences are monotonic)

N N
i i
D § C, = Pt E €
i=1 i=1
Summing over ¢
9] N [e's) N
i i
EPtE ct:§pt§:et
t=0  i=1 t=0  i=1

Now, what happens if we sum the individual budget constraints across agents?

N oo N oo N
2.2 ma=) ) met ) m

i=1 t=0 i=1 t=0 =1

Since we can rearrange any of the above infinite series, having m' > 0 for any ¢ will
immediately contradict either market clearing/feasibility in every period or the aggregate
budget constraint. For the two to be consistent, we must have m® = 0, Vi. O]

Both of the above proofs crucially rely on finiteness of the value of the aggregate endow-
ment at an ADE to show that money cannot have any value. In fact, it is finiteness of
the value of the aggregate endowment that rules out bubbles in this economy, and hence
strips money from any value it may acquire. This highlights the main reason why money
tends to have value in OLG models: due to the double infinity (of agents and periods),
the value of the endowment may not be finite. This gives room for bubbles to arise, and
hence for money to acquire value.
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2.3 Pricing Money in the Lucas Model

It could be argued that the previous set-up, a pure exchange Arrow-Debreu economy, is
too restrictive for money to have an effect and, henceforth, be valued. We now proceed
to show that this result is rather robust: even in less restrictive economies, where a wider
variety of assets may cohabit, money is still likely to become a worthless asset given its
lack of fundamental value. To see this, consider the original Lucas Tree economy, with
two relevant adjustments:

1. There is a single tree paying a deterministic stream of dividends, {d;}{2,.

2. There is a government that issues fiat money to pay for government acquisitions
of fruit. Consider a sequence of government expenditures {g;}:°,. At t = 0, the
government places M dollars (per capita) in the economy to acquire fruit. Let ¢}
denote the value of a dollar in terms of fruit at time ¢ (how many units of fruit are
needed to buy a dollar). Clearly, this will be the inverse of the price level, p, = #

Government expenditures are

g0 = Moy’
thO,VtZ 1

Assume that {d,} is uniformly bounded away from zero. That is, 3d: 0 < d < d;, Vt > 0.

The agent will now choose a sequence of consumption, and may choose either to save
through shares of the tree or money. Therefore, there will be a nontrivial portfolio
allocation problem in this economy. Once again, we work with a representative agent
formulation. The problem, in a sequential budget constraint formulation, can be stated

as
00

max Z Bru(ct) (HPL)
{ct,st41,mer1}52, =0
subject to
C + Ofser1 + Oy = (@ + dy) sy + ¢f'my
Cty St41,Miy1 = 0

80:1;m0:1

Note that the agent starts with no money holdings: they are injected by the government
in the economy at ¢ = 0. Our definition of equilibrium will be the following:

Definition 2.3.1. For a given sequence {dy, g:}32,, a Competitive Equilibrium is an
allocation {cy, i1, M1 }52 and a price system {5, ¢7* 122, such that

1. Given prices and the sequence {dy, g:};2,, the allocation solves (HPL).
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2. Markets clear at every period

Goods : ¢; + g = d;
Stocks : sg1 =1
Money : myy1 = M

Definition 2.3.2. A Competitive Equilibrium which, furthermore, satisfies ¢;* > 0 for
all t > 0 is called a Monetary Equilibrium or a Competitive Equilibrium with
Valued Fiat Money.

Note that, from the way we have specified the stream of government expenditures, we
should observe, from feasibility and goods market clearing;:

co =do— 9o
Ct:dt,th 1

As hinted in the previous section, the introduction of a Lucas Tree will kill off any bubbles
and make money worthless. We now proceed to show this in several steps. We begin
with the following lemma that tells us that if the value of money ever hits zero, then it
will remain zero forever.

Lemma 2.3.1. If ¢i"* = 0 for some t, then ¢}, = 0,Vs > 1.

This is, in some sense, a converse of the classical result on bubbles that says that a bubble
can only exist today if there is some future period/state in which a bubble will exist. In
this case, we are saying that if there is no bubble today, there will be no bubble in the
future.

Proof. Suppose not, and suppose that ¢y}, > 0 for some s > 0 and ¢;* = 0. Then, this
cannot be an equilibrium, as the agent will set m;;; = oo and the budget constraint will
be unbounded at t + s (the agent will be able to choose infinite consumption). Therefore,
we must have ¢;* > 0, a contradiction. O

The next lemma is closer to the classical result on bubbles:

Lemma 2.3.2. If ¢]" =0 for some t, then ¢;" , = 0,V0 < s <+t.

So, if the money has zero value today, it cannot have had any value in the past. If there
is no bubble today, there cannot have existed any bubble in the past.

Proof. The logic is similar: consider ¢}* = 0 and ¢;", > 0. Clearly, the agent will not hold
any money at t—1. For the money market to clear, the price must therefore decrease. But
the agent is not willing to hold any amount of money for any positive price. Therefore,
the price must be equal to zero for the agent to hold the money that is in the economy.
By induction, we conclude that this must hold to any period prior to t. O]
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We have therefore established that if the price of money ever hits zero, at any point in
time, then it is always equal to zero (that is, before and after that period). Thus, to
show that money has no value, it is enough to show that money has no value for a single
arbitrary period.

We can write the Lagrangian for the consumer, explicitly incorporating all the constraints
(such as the non-negativity ones) as

L= Z B {uler) + Ne[(@] + di)se + @'y — ¢ — ¢ s1 — O g ] + s + 0vSea + e}
t—0

The FOC are the following:

Ct - U,(Ct) =N ="
St1 0 M@ = BAep (P + diy1) — 0y
Myy1 : M@y = BAy10r 1 — 1

Plus complementary slackness conditions

Ml(0F 4+ di)se + o' my — ¢ — GiSe1 — @ 'mesq] =0

pemyr1r =0
0tSe41 =0
Ve =0

The non-negativity multipliers (¢, o4, 7:) are equal to zero whenever the corresponding
control variable is strictly positive. Given that we have assumed an Inada condition, and
the dividend is uniformly bounded away from zero, we can safely assume that v, = 0.
Foreseeing what will happen in equilibrium, we can also assume that o, = 0, and will be
primarily concerned with the p; term. Combining the FOC’s for ¢, s;11 we obtain the
typical Euler Equation

u'(c) g = Pu(cr1) (P71 + digr)

Note that since this is a fully deterministic problem, there are no expectations hanging
around. From the FOC for money, we can also obtain an expression for the multiplier on
the non-negativity constraint on money holdings:

He = ¢;"u'(ct) - 5¢?3r1u,(0t+1>
Replacing in the complementary slackness condition leaves us with
(97" (c0) — By (cepa)]meps = 0
or, from the fact that ' > 0, Ve

m ul(ctJrl) m
gbt _B UI(Ct) ¢t+1 mi4a =0
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We have put together the Euler Equation for money and the complementary slackness
condition, thus allowing us to describe the optimal money holdings with a single equation.
Note also that the rearrangement allowed us to write this expression as a function of the
stochastic discount factor. From the Euler Equation for stocks, we know that we can
write it as...
u'(c1) o 1
() Giy1 +dir Riy

...the inverse of the return on the stock. Thus our condition for money becomes

1
[szn - Tﬁbﬁd} mir1 =0

t+1

Now, if this economy has a Monetary Equilibrium, then m;,; > 0 for some agent. Thus
the term in brackets must equal zero. That is

s ¢ﬁ-1
t+1 —
;"

The 'return on money’ must equal the return on the stock. Recall that we characterised
the price of money as the inverse of the price level, ¢ = plz' Thus the above statement
is equivalent to
Pt 1
RtSJrl = =
Pe+1 Tt

The return on the stock should be equal to the inverse of the gross rate of inflation in a
monetary equilibrium! This is the non-arbitrage condition that ensures indifference be-
tween the two assets, and it is quite intuitive: the stock pays a real return - the dividend.
For the agent to be indifferent between the stock and money, with the latter paying no
real return, it must be that money is gaining value in terms of capital gains at the same
rate as the stock pays the dividend. Thus, if the (net) return on the stock is positive,
the price of money must be going up: one unit of money today must be worth less than
one unit of money tomorrow! In other words, the economy must be experiencing deflation.

Now, take the Euler Equation for equity and iterate it forward to obtain an expression
for the stock price:

: n /s ul Ct4n
diy; +nh_>r£loﬁ ¢t+n ( as )

u'(ct)

n—1 ' ul(ct+ )
; = lim J 2
o=l 2
J=1
Let us assume that the bubble term is equal to zero, that is, prices are bounded in
equilibrium. This allows us then to write the price of the stock as

s - ju,<ct+') )
¢t - 25 u’(ct; dt+]

j=1
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Now, recall from feasibility that ¢y = dy — go and ¢; = d;, V¢ > 1. This means that

u'(d
ZB” ”J iy, ¥t > 1

) gy )
Zﬁ t+] _Bu/(do_go) (Qbi_’_dl)

where, recall, gy = ¢{' M, which highlights the fact that the monetary and equity sides
of the model are not completely independent: the price of equity at period 0 will be
influenced by the price of money at t = 0 (but not afterwards).

So, in order to solve for equity prices, we need to pin down money prices. From the
complementary slackness condition, we had concluded that

¢ZL|—1 t+1¢t

or, more generally, for any 7 > ¢

925;1]‘ = (H Rt-‘rz)

This holding for all ¢ > 0. This allows us to express the price of money at any point in
time as the function of the price of money at ¢t = 0

- i)

From the fact that the return on equity equals the (inverse of the) stochastic discount

factor, we get that
(H 5“’ C’H—l >

_ v "(co) u'(cr) u'(C-1) m
Bu'(er) Bu'(es) T Bu(cr)
_ ulc)
o 5tul<ct>¢0
_ u'(do — go)
B (dy)
and note that the price of money in period 0 is also ’hidden’ in gy = M¢{'. So if we

determine ¢g', we can determine the price of money at any point in time, as we have the
sequence of dividends.

o

Note that from v’ > 0,Ve > 0, it follows that ¢ > 0 = ¢ > 0,Vt > 0. Similarly,
it o' = 0, then ¢}* = 0,Vt > 0. We take advantage of this fact to prove the following
proposition, that tells us that money will be worthless in this economy.
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Proposition 2.3.1. In any equilibrium, ¢;* = 0,Vt > 0.

Proof. Note that the sequence { w(do— )} is bounded away from zero. Why? Recall
t=0

u (dy)
that 0 < d < d;, Vt. Therefore u'(d;) < u'(d) < oo, Vt, and the sequence is always strictly
positive. This then means that
u'(do — go)
ﬂtul(dt>
as ﬁ% — 0o. This then implies that if ¢f' > 0, from our previous remark, we will have
lim;_,o ¢ = 00. Since the price is unbounded in the limit, if the agent holds m;;; > 0,

he will be able to attain unbounded consumption, and this cannot be an equilibrium.
Thus ¢f' =0 = ¢;" =0,Vt >0 O]

— 0

We then show that the value of money is equal to zero at any period. Note then that
go = M@y = 0, the government is 'not able to inject’ the money in the economy, as no
one is willing to buy it at a positive price. Thus we are still in Lucas’ original economy:
Lucas did not miss anything by not adding money to the model.

The main obstacle to money in this model is the existence of the tree asset: for anyone
to be willing to hold money, it must pay the same return of equity, as we have observed.
However, this requires the price of money to grow at a fast enough rate so that the capital
gains from holding it match the real gains from holding the asset (the dividend gains).
But then the price of money must explode, and this is not compatible with a well-defined
equilibrium. It is relevant to note that while the Lucas tree strengthens the result, money
would not survive in its absence either, for the same reason.

2.3.1 Example: Constant Dividends

Suppose that the stream of dividends is constant, d; = d, Vt. Then, the stochastic discount
factor becomes simply:
u’(dt) . 1
Bu'(dir1) B

Meaning that the non-arbitrage condition for money is given by

P _ s _ 1

¢17:n - t+1_B

so that the return on the stock is constant. As we have seen, the growth rate of the price
of money is the inverse growth rate of the price level, which in this case will be p; =
Thus the net inflation rate is 7y = f—1 < 0 negative, as we had pointed out. The general
expression for the price of money at ¢ can be written as

¢ = B¢
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where we can see that the price of money will be rising too fast to match the return on
equity. Thus the only possible equilibrium involves setting ¢7' = 0, so that money is
worthless forever. Finally, the price of equity also has a very simple expression:

¢f+1+d:l sl o Lfl =d
which yields
s _ bd
¢t - 1 o /8

That is, the price of the asset will be constant, which is not surprising in a fully deter-
ministic environment where dividends are constant.

2.4 Transversality Conditions

The discussion on money provides a good environment for discussing Transversality Con-
ditions. Recall that, so far, we have always ’assumed away bubbles’ by imposing that
prices should be bounded. Therefore, expressions of the kind

lim 5T u'(Ceyr)

T—s00 'U/(Ct) ¢t+T

are assumed to be equal to zero - both consumption in the future and prices are bounded,
hence the whole expression converges to zero via € (0,1).

However, some remarks are in order:

1. It has already been hinted that bubbles may arise in certain circumstances (OLG
models with money, for example).

2. Very often, we can actually show that the absence of bubbles is a consequence of
optimising behaviour by the agent. That is, instead of assuming away bubbles, we
can show that this arises due to more fundamental assumptions we impose on the
problem.

This section looks more deeply at the conditions under which Euler Equations and
Transversality Conditions are necessary or sufficient for optimality.

2.4.1 Solving Difference Equations

Very often in macroeconomics, we encounter difference equations of the type
Yt = BYsr1 + YT
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Assume that {z;}°, (the exogenous shock sequence) is an element of [(4[0,00), dw],
where do, = sup, |r; — y;|. Also assume that || < 1 and v € R.

There are several possible approaches to solving the above equation. Solving in this
context involves isolating the endogenous variable y; and expressing it as a closed-form
function of the exogenous sequence. Two of these common approaches follow:

Contraction Methods

These involve, as the name implies, defining a contraction mapping and taking advantage
of the convergence properties to finding a solution. For the above equation, define the
operator T : {o, — l, as

T(y)l: = Byrr1 + v

That is, given some exogenous sequence {z;} and any arbitrary sequence {y°}, the map-
ping 7T takes {y?} and generates a whole new sequence, {y!} := {[T'(y°)];}, in the manner
that is described above (applying the difference equation to every element of the old se-
quence).

Claim 2.4.1. T is a contraction mapping on l.

Proof. To check this, it is enough to apply Blackwell’s Sufficiency Conditions. Note first
that /. is the space of bounded sequences. Therefore, T" is a self-map on the space of
bounded, natural-valued functions, which is itself a particular case of a space of bounded
functions. This allows us to effectively apply Blackwell, as one of its requirements is that
T be a self-map on a space of bounded functions. Note that without further assumptions
on (3, we can do nothing, as § < 0 would violate the usual monotonicity assumption. We
proceed by studying each case separately:

1. If p € [0,1), monotonicity follows immediately, as for any {y:} > {2} (meaning
that y, > 2, Vt) we have that

[T(W)]: = Byera + v > Bargr + vy = [T(2)];, Vi

hence {[T'(y)]:} > {[T(2)]:}. In what concerns discounting, note that for any con-
stant a > 0 and any sequence {y;} € ¢, we have that

[T(y + a)le = B(yer1 + a) + vz = [T(y)]: + Ba
Thus discounting follows from S < 1. This then establishes 7' as a contraction
mapping.

2. In case 5 € (—1,0), we can use an alternative formulation of Blackwell’s Sufficient
Conditions for a contraction mapping:

Proposition 2.4.1. (Alternative Blackwell) Let X C R™ and let B(X) be the
space of real valued bounded functions defined on X, endowed with the sup norm.
Let T : B(X) — B(X) be an operator satisfying
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(a) Forany f,g € B(X), f <g= (Tf) = (Tg).
(b) 36 € [0,1) such that T(f —a) < (Tf) + Ba,¥f € B(X),a > 0.

Then, T is a contraction with modulus (3.

For 'reverse monotonicity’, take {y;} < {z}. Then

T(y)|e = Byrs1 + 2 > Brpr + vy = [T(2)]

since < 0 = Byp+1 > Bzi41. For reverse’ discounting, take a > 0 and {y;}, then

[T(y — a)ls = B(yrs1 — a) +v2 = [T(y)]: — Ba = [T(y)]: + Ba

where := —f and belongs in the [0, 1) interval. Thus 7" is a contraction with
modulus .

Now that we have established T" as a contraction mapping, let us proceed to find its fixed
point. It exists since (£, ds) is a complete metric space, hence the Banach Fixed Point
Theorem applies - and we get to know that the fixed point is unique! Define, as already
suggested, y**t1 := T(y*), the k + 1-th iteration starting at some arbitrary sequence y°.
For any sequence of such kind:

[T<3/0)]t = ytl = 5yz?+1 + vy
[Ty =y = Byira + 2
[Tk(?/o)]t = yf = 5954:11 + YT = /8[592:22 + Y Tq1] + 2
k—1
=B+ Blany
§=0

Now, taking the limit £ — oo gives us, by the properties of the contraction mapping, its
fixed point. Let y; = limy_oo[T%(y°)];. Then:

Y = ’YZO Bjxt+j + klggo 5k3/?+k
j:

But since {y{} € /., it is a bounded sequence. Hence 3? < o0o,Vt. This, along with
|B| < 1 ensures that the limit term disappears, allowing us to obtain the solution to our
difference equation

Y= Z 5j$t+j
3=0
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Forward Substitution

Consider a more general setting in which {y;} need not be bounded. In this world, the
limit term need no longer vanish as £ — oo, since y,?+k could diverge to infinity, for
example. In fact, by imposing bounded behaviour, we may be ruling out some viable
equilibria in the previous recursive formulation of the problem. While keeping with the
assumption that {x;} € f, unboundedness may only arise if the crucial assumption of
|B| < 1 is dropped. Without this assumption, the previous method cannot be exactly
repeated, as the contraction mapping as we have defined will not even exist. Suppose,
then, that || > 1. In this case, the equation must be solved backwards instead of forward.

That is, rewrite it as
1 gl
Ye+1 = ZYr — 7T
B B

and since [1/5] < 1, a contraction mapping argument can now be applied to solve the
equation as in the first case.

2.4.2 The Canonical Setting

As it is evident, both methods rely heavily on a recursive structure that breaks down
if, for example, the assumption that {z;} € ¢, is dropped. As stated, by forcing this
term to live on a bounded world, we may be ruling out and ignoring equilibria that are
potentially relevant to the analysis.

We then seek a more general treatment and conditions under which we can, in fact,
assume (or obtain) that the limiting terms vanish.

For this, let us set up the canonical sequential problem, in which some decision maker
seeks to optimise over some infinite sequence {z;}:°, of endogenous state variables

o0

max Z BtF(xt, Tiy1) (SP)

{ze1}iZ0 45

subject to

IL‘t+1 - F(fL‘t),Vt Z O

Ty = To given
The 'deep’ primitives of the problem are the following:

1. X C R" is the state space.

2. I': X = X is the constraint correspondence.
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3. F: X x X — R is the (instantaneous) return function.

We are further going to consider the following assumptions (or a subset of them)

1. (E1) X is a convex subset of R", and I' is nonempty, compact-valued and continuous.
2. (E2) F is bounded and continuous, and 5 € (0, 1).
3. (M1) F(-,y) is strictly increasing for each y.
4. (M2) I' is monotonic: z < 2z’ = I'(z) C I'(2/).
(C1) F is strictly concave.
6. (C2) I' is convex valued: for every A € (0,1) and z,2’ € X, we have that y €

L(x),y eT(2) = y+ (1 =Ny e Az + (1 — N)a').

7. (D) F is continuously differentiable on the interior of the constrained set {(z,y) €
X xX:yel(x)}

8. (I) Given (E1), (E2), (M1), (M2), V (the value function for the recursive formulation
of SP) is strictly increasing.

Based on this framework, we now proceed to discuss the necessity and sufficiency of the
Euler Equation and Transversality Conditions for solving the (SP) problem.

2.4.3 Necessity of the Euler Equation

Suppose that the sequence {x;}:°, solves (SP). This implies that there cannot be any
feasible and profitable one period deviations from this sequence. That is, given z} yester-
day and zj,, tomorrow, it must be optimal to choose xj, ; today, and not anything else.
The sequence is, in Game Theoretical language, unimprovable. Formally, this means that
xy,, is the solution to the one period problem, defined as follows

max{F(z,9) + Ay, 7,2)} (1PP)
subject to
y € I(x7)
zio € I(y)

If y # 7., this would contradict that the original sequence was optimal in (SP)!, as we
would had found a one period deviation (keeping everything else constant) that would
yield a higher present discounted value of returns. Thus the minimal requirement is that
xj, , be at least one of the solutions for the above problem.

'This is if 27, is unique. Otherwise, read the statement as ’if y ¢ argmax(SP), subject to the
constraints’.
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Proposition 2.4.2. Let (E1), (E2), (M1), (M2), (D) hold. Then, the necessary first-
order conditions for (SP) coincide with those of (1PP) for allt > 0, that is:

0 = Fy(xj, 562‘+1) + ﬁFl(ﬁHa $Z+2)
zy,, € I'(z})

ri, € D(zp,)

Thus under rather reasonable assumptions, the Euler Equation is a necessary condition for
optimality in the sequence problem. It is, therefore, a necessary condition for optimality
in any recursive formulation that is based on the sequence problem.

It is interesting to note that, for example, concavity of the return function or convexity
of the constraint correspondence are not required for the Euler Equation to be necessary.

2.4.4 Necessity of the Transversality Condition

Consider a n-dimensional problem, that is dim(z;) = n. We have established that, for
such a problem, n Euler Equations (EE) are necessary to trace out the optimal path.
Note, however, that the EE form a system of n second-order difference equations. This
means that we need 2n boundary conditions to completely characterise the optimal
path: to see why this is true, look at the EE in the previous section - xj ; is only
determined if we have both x; and xy_,.
Half of the problem is solved by the fact that we take x(, the initial states, as given. This
takes care of n boundary conditions. However, if no further conditions are imposed, the
solution may still be indeterminate. To solve this, we include transversality conditions
(or final conditions) to pin down the optimal path. These are conditions of the type
lim 67 Fi (2, a3, ) = 0 (TC)

T—o0

Intuitively, TC tells us that the present discounted value of the state should go to zero
as the time horizon expands. This condition stems very naturally from finite horizon
reasoning: the state is valuable, and the more I have of it, the happier I am. The whole
point of the problem is to manage the state so that it ’"does not run out’ and I can keep
extracting happiness from it while I am alive. Therefore, when I die at ¢t = T', I want
to completely exhaust the state (but I really only want that to happen at that specific
point). If the value of the state is not zero when I die, then I could change my policy and
improve my situation. Thus, as long as I value the state, that is F; > 0, it is optimal
to have 27, = 0. The only instance in which I would be willing to allow 27, > 0 is when
the state is worthless to me, or F; = 0. Thus, (TC) is, in some sense, analogous to a
dynamic Kuhn-Tucker Complementary Slackness Condition: either the state is valuable
so its final amount should be driven to zero, or it is not valuable and in that case the
program can end with a positive amount of it.

We proceed with some definitions that are useful for studying when is (TC) necessary.
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Definition 2.4.1. A path {x:}{°, is feasible if, given xg, ;11 € ['(xy),Vt > 0.

Assumption 2.4.1. Any feasible path {x;};2, can be evaluated. That is

T o0
Thiﬁ.lozgﬁtF(wt, Tiy1) = zgﬁtF(xt,l"tH) eR
t= t=

Definition 2.4.2. A feasible path {z}}°, is optimal if, for any {x;}:2, feasible

o x

¢
E o4 F $t>$t+1 E $t7$t+1
t=0 t=0

Definition 2.4.3. A feasible path {x:}{°, is interior if x;., € int[[(x;)],Vt > 0 (note
that this is silent on xg).

These definitions and assumptions take us to the main course:

Theorem 2.4.1. (Kamihigashi, Economic Theory 2002) Assume (M1), (M2), (C1),
(C2), (D). Assume that 0 € T'(0), Fy(z,y) < 0. Let {x}2, be any interior optimal path.
Then:

Jimn (=67 P, 2y )] = 0

Proof. For notational simplicity, let z* = {x]}{2,. The proof relies on the following
lemma:

Lemma 2.4.1. Let f : [0,1] — RU {—o0} be concave with f(1) > —oo. Then, Vv €
[0,1),YX € [y,1) we have that

)~ _ fO) ()
1—A - 1—7

Let A € [0,1) and consider the following path, based on the original optimal one:

A * % * * *
ot ={ag, 21, ¥, ATy, AT, -}

That is, we ’slightly contract’ the original optimal path from T" 4 1 onwards. This new
path is still feasible for A close to 1, as * was interior and the constraint correspondence
is monotonic by (M2). From optimality of z*, 2} cannot yield a strictly greater payoff.
By assumption, all feasible paths can be evaluated, hence we must have that

o o

¢ ¢
E BF( xtvxtJrl > § BF( xtaxtﬂ
t=0 t=0

However, we know that the paths coincide until period 7', hence we can cancel all those
terms and rearrange so to be left with

AU (a7, A0pq) — F(2, 27 4)] Z R P2y, 2750) — FAzy g, Azy,)]



We can interpret the LHS as the gains from a one period deviation, and the RHS as the
subsequent losses that result from that deviation. The above expression then tells us that

any incurred losses exceed one period gains from deviating from an optimal path. Divide
both sides by 1 — A

B (g, Aefpy) = Fag, 74,)] < Do BHF (25, 7750) — F(Aafiy, Avfys)]
1-A - 1—A
Now, consider some vy € (0, A). If we replace all A on the RHS by 7, we will be making

the difference even wider. This is because v < A and, by assumption, F' is monotonic.
Therefore:

T * * * * o) t+1 * * * *
B [F<IT>)‘$T+1> - F<IT>xT+1)] < Zt:Tﬁ [F(xt+1axt+2) - F(th+1’7xt+2)]
1—A - 1—7

Now, let v — 0, and divide and multiply by 7, on the LHS to obtain:

BTF(zh, Aok, () — F(ah, ok )]s S O
[F' (7 Tit—l_) - *( T )] T < Zﬁt+1[F(It+17$t+2) — F(0,0)]
( )T t=T

Note that the sequence z; = 0,Vt > 0 is feasible as we assumed that 0 € I'(0). Further
note that we can rewrite the LHS as

5T[F(x*T,fEEkr+1 - (1 - A)x;H) - F(x}, $*T+1)]x§’+1
(1= Naxjy,

Factoring out 7z, and letting A — 1 leaves us with the derivative of F' with respect
to its second argument!

F(z7, Tpiq — (1— )‘)x*TH) - F(iﬁ;‘»x;‘ﬂ)

T % .
[ }gq
Now, by assumption, F5 < 0, hence we have that

[ee]

0< _BTQZ;UAFZ(:C;‘? x;’qtl) < ZﬁtJrl[F(x;;l?x;rQ) - F(Ov O)]
t=T

We know, by assumption, that any feasible sequence can be evaluated. This then means
that the series of payoffs generated by any feasible sequence must converge, hence its tail
converges to zero. That is, as T" — oo the RHS of the above inequality must converge to
zero. Taking limits leaves us then with

0 < lim [=8"27,  Fo(ap, 27y)] <0

Thus we have proved that optimality implies the above condition or, put it differently,
that the above condition is necessary for a path to be optimal. O]
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The (TC) that we have just worked with, and whose necessity we have just shown, is
stated in slightly different terms than the (TC) that was originally presented. While the
original (TC) was written in terms of the derivative with respect to state, F, the above
one includes the derivative with respect to the control, F5,. This equivalence between the
two stems from the Euler Equation:

Fy(xf, vyy) = —BFi(2114, T14)
Allowing us then two write

BT+1

lim [_BTI*T+1F2(Z‘*T> 95*T+1)] = ’111—{20[ x;’+1F1(I§“+17 95*T+2)] =0

T—o0

which is a slightly more common formulation of the TC.

2.4.5 Sufficiency of the Euler and Transversality Conditions

In general, as we have seen, both (EE) and (TC) will be necessary for most problems we
encounter. However, if the problem is sufficiently more behaved (under further restric-
tions), they can actually turn out to be (jointly) sufficient for optimality. The following
theorem addresses this issue

Theorem 2.4.2. (Stokey & Lucas, 4.15) Let X C R", and F satisfy (E1), (E2), (M1),
(C1), (D). Then, the sequence x* with xy,, € int[I'(x})] is optimal for (SP), given x, if
it satisfies (EE) and (TC).

Proof. Let z* be a feasible sequence given z, that satisfies (EE) and (TC). We want to
show that it is optimal, hence it is sufficient to show that the difference between the
value of x* and the value of any other sequence x is non-negative. Assuming that both
sequences can be evaluated, we want to analyse the sign of

= lim Zﬁt xt,xtﬂ — F(zy, 2441)]

T—o00

From (C1) and (D), F is strictly concave and differentiable at any x;y; € int[['(x;)], its
value at any (z;,x4y1) is lower than the value of its first order Taylor Expansion. That
is, expanding around (z;, x} )

F(xy, we1) < Flay, o) + Fu(@g, o) (@ — @) + Fa(og, 00) (T — 274,)
Rearranging:
oy, wiy) = Foy, wa) 2 Fu(ey, ofn)(07 — o) + Faleg, wp0) (08, — 2)

Multiplying both sides by 8¢ and summing over ¢, this allows us to establish that

T—o00

T
D> lim S BIF (], i) (] — 20) + Falaf, 2, (e — wian)]
0
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Now, notice that the initial condition is fixed for any feasible sequence, x = 2. There-
fore, rearranging terms:

T—o00

T-1
D > lim {Z BEy (), 24) + B (2], 230 (T 1 — Ten) + BT Fy(ay, ) (@7 — xTH)}

From the assumption that z* satisfies (EE), the summation is equal to zero for any ¢.
Hence we are left with

D> Tlgfgo 6TF2(35;}»35;+1)(5E;+1 — ZT741)

We can use, once again, (EE) to replace Fy with —5F; and get

D > — lim BTFl(xi_‘p,a:i}H)(x}H—xTH) = — lim 5TF1(13§F’17;}+1>$;+1+ lim BTFl(x;}aJJ;}H)a?TH
T—o0 T—o0 T—o0

By assumption (M1), F' is increasing on its first argument, hence F; > 0. We have also
assumed that X C R} = x;, > 0,Vt > 0, hence we can get rid of the second term to
widen the inequality

: T : T : T
D> _Tlggoﬁ Fl(x*T,x*T+1)x}+1+Tlggoﬁ Fi(ap, ¥pp)orn = _Tlgroloﬂ Fy(ap, x74)07 4

But since z* satisfies (TC), the RHS of the inequality is equal to zero. Hence D > 0 and
we conclude that if a sequence satisfies (EE) and (TC), then it must yield a payoff in
present discounted value greater than any other feasible sequence. Therefore, it must be
optimal for the (SP). O

Note that we could achieve sufficiency of (EE) and (TC) with very few restrictions on
the constraint correspondence I' (only that it is nonempty, compact and continuous).
We did not use, for example, neither monotonicity or convexity. However, the result
presupposes that a candidate optimal sequence x* has been located and is feasible. For
such a sequence to exist (one that satisfies EE and TC), further restrictions on I' may
need to be imposed.

2.4.6 Lucas 1978 Revisited

Did Lucas miss any viable equilibria by imposing the (seemingly) exogenous no bubble
condition when solving for the tree price? We can now put our knowledge at work and
confirm that this is not the case. Focusing in the case with no uncertainty (the results
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are easily adapted to account for that), recall that the sequence problem could be written

as
00

max BU(c
{ct,se41152, ; ( t>
subject to
Ct+ GiSip1 = (O + dy)sy
St11,¢ > 0

80:1

Let us modify the problem by eliminating the budget constraint and leaving everything
in terms of an endogenous state variable which is also the control - s,

max ZﬁtU[(Cbt +dy)sy — PrSiyi]
=0

{se+1}i20 T

subject to

We can easily confirm that this problem satisfies all the assumptions we require for both
necessity and sufficiency of (EE) and (TC):

1. (E1) In this case, X = R’} and I'(s;, dy) is clearly nonempty (if we assume d; > 0
for example), compact-valued and continuous.

2. (E2) F = U(s¢, St+1) is assumed to be bounded and continuous in the 1978 paper,
the discount factor satisfies 5 € (0, 1).

3. (M1) Given that U is strictly increasing on its (single) argument, it is clearly in-
creasing in s;.

4. (M2) T is clearly monotonic: s, > s; implies that I'(s;,d;) C T'(s},d;). It is also
monotonic on d;.

5. (C1) Utility is assumed to be strictly concave.

6. (C2) I' is clearly convex valued: if s;11 < é(@ +dy)s; and s;,; < i(@ + dy)s;,
then for any A € [0, 1] we obtain

Aser1 + (1= A)spyy < /\%(th +di)se + (1 — /\)%(th +di)s)

7. (D) Utility is assumed to be twice differentiable.

8. (I) Follows immediately from the fact that utility is strictly increasing.
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Therefore, (EE) and (TC) should be both necessary and sufficient. Considering market
clearing for goods, ¢; = d;, we can write (EE) as

U'(dy)dy = BU' (dys1) (11 + diy1)

and (TC) can be written in its F} form as
lim B*U'(dr)(¢r + dr)sr =0
T—o0

In equilibrium, s; = 1,¥t > 0, hence (TC) becomes

lim 10" (dr)(¢r + dr) = Jim BYU (dr)¢r + Jm pYU (dr)dr =0

T—o0

Now recall that in the original paper, it was argued that U’(d;)d; was bounded. This
means that the second term is equal to zero, from 5 < 1. So the final form of the (TC)
becomes

lim BTU'(dr)pr =0

T—o00

Now, to obtain the asset price, solve for ¢; using (EE)

Ulde) 1] U (d)
Ur(dy) }‘5 U7(dy)

¢t[1—ﬁ

where L~! is the forward lag operator. This gives rise to the following general solution
for some k € R (that is, not assuming bubbles away):

iU ™
Z PG et

To see that this solution is valid, note that

gt U’(dt+1)L—1] — 5 gt

L U'(dya), =0 B! gt
U'(dy) U'(dy) U'(dy)

Udy) U oy oy O

1—p

- B

Now, the asset pricing equation should satisfy (TC). Plugging the equation we have found
on the expression describing (TC):

lim STU (dy) ZﬁJ (dTﬂ)d Ny B =0
T 500 r) U'dr) 7 U (dy)

Rearranging leaves us with

Jim. BT Z BU (dpyj)dry; + k=0

7=1

o7



Since U'(dr;)drj is bounded, the first term goes to zero. Is this so obvious? Note that
U'(dr+j)dry; < B,Vt > 0, and since marginal utility, the dividends and the discount
factor are all positive terms:

< Sl B
. T / . T I T T _
0< lim 5 zﬁJU(dT+j)dT+j§%g§Oﬁ Z;BJB—gggoﬁ =50
j= j=
But then we are left with
lm k=0 k=0

T—o00

This means that the only possible value that k& can take is zero, in order for (TC) (which
is both necessary and sufficient) to be satisfied. Therefore, Lucas was not - indeed -
missing any solution or equilibrium by assuming away bubbles!
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Chapter 3

Search

3.1 Introduction

This section deals with Models of Search, widely used in fields such as labour economics
and monetary theory. We start with some mathematical preliminaries, then proceed to
partial equilibrium models of job search and conclude by looking into full-fledged general
equilibrium models of search. The key feature of these models is the direct formalisation
of the mechanics of trade.

Walrasian equilibrium models assume away, or take as given, the details of the trading
process. This is usually achieved by postulating the existence of an auctioneer and/or
a clearing house, where a single price is set/arises and all agents conduct their desired
trades simultaneously, at that given price.

Search models, on the other hand, do not assume that trade is, any way, centralised:
each individual autonomously ’searches’ for trade opportunities, and the trading process,
if a match is found, is concluded in an isolated manner. Thus, even though models
of search are rather silent on what concerns the definition and the mechanisms that
underlie equilibrium prices, this brief presentation evidences the fact that several prices
may coexist in equilibrium due to the decentralised nature of the trade process.

3.2 Mathematical Preliminaries - Poisson Processes

3.2.1 Some Definitions

We start by providing some basic definitions concerning stochastic processes.

Definition 3.2.1. A random wariable is a measurable function.
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Definition 3.2.2. A stochastic process is a sequence of random variables, X = {x(t) :
t € T}, where T, represents the time dimension. If time is discrete, Ty = NU{0}. If
time is continuous, T, = R,.

Definition 3.2.3. A continuous-time stochastic process is said to have independent
increments if for all ty,tq, ..., t,, the random variables

x(ty) — z(to), x(ta) — x(t1), ..., x(t,) — x(tn_1)
are independent.
Definition 3.2.4. A stochastic process is said to have stationary increments if the
distribution of x(t + s) — x(t) is independent of t.
That is, the distribution of the increments should depend only on their size (time-wise),

and not on their location.

Definition 3.2.5. A continuous-time stochastic process {N(t) : t > 0} is a counting
process if N(t) denotes the number of events/arrivals that occurred on (0,t]. A counting
process must satisfy the following properties:

1. N(t) >0, there cannot be a negative number of events.

2. N(t) e NU{0}, must be integer valued (there cannot be "half” of an event).
3. N(s) < N(t) for all s <t (events do not ’disappear’).

4. For s <t, N(t) — N(s) must denote the number of arrivals on (s,t].

Definition 3.2.6. A function f: R — R is said to be o(A) if

)
AT =0

The following two are the most important definitions of this section:

Definition 3.2.7. (Poisson Process A) The counting process {N(t) : t > 0} is said to be
a Poisson Process with arrival rate o > 0 if

1. N(0) =0

2. The process has independent and stationary increments

3. As A — 0
(a) PrIN(A) = 1] = aA + o(A)
(b) PrIN(A) =0] =1 — aA + o(A)
(c) PIN(A) > 2] = o(A)
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It should be remarked that a is not a probability, but rather a rate of arrival. That is,
as A — 0, then aA does indeed constitute a probability, but it should not be generally
interpreted as such (it can exceed one, for example).

Definition 3.2.8. (Poisson Process B) The counting process {N(t) : t > 0} is said to be
a Poisson Process with arrival rate o > 0 if

1. N(0)=0

2. The process has independent increments

3. The number of arrivals in an interval of length A follows a Poisson distribution
with mean aA. That is, for any A > 0 we have that

(aA)mefaA

m)

Pr{N(t + &) — N(t) = m] =

Note that condition 2) no longer requires stationary increments. It turns out that this is
embedded in the 'new’ condition 3).

3.2.2 A Big Theorem

The following result should be expected:

Theorem 3.2.1. Definitions 3.7 (A) and 3.8 (B) are equivalent.

Proof. We first show that A = B. The first two conditions for B are direct and explicitly
stated by A. Therefore, we just need to prove B.3). By stationarity of the increments,
location is irrelevant. Thus we can set ¢ = 0 without loss of generality. From the fact
that N(0) = 0, we would like to obtain:

(aA)me—aA

PrN(A) = m] = ==

Take some arbitrary interval [0,¢ + h] and denote the probability of zero arrivals in that
interval by Py(t+h) := Pr[N(t+h) = 0]. Note that we can decompose this probability in
the intervals [0,¢] and (t,¢ + h] by using the properties of the Poisson process and write

Py(t+h) =Pr[N(t) =0AN(t+h) — N(t) = 0]

From the fact that increments are independent, the above probability is equal to the
product of the probabilities of each event

Py(t+ h) = PN (t) = 0] Pr[N(t + h) — N(t) = 0]
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Once again, location is irrelevant by stationarity of the increments. This allows us to set
t =0 in the second term to obtain

Py(t+ h) = Pr[N(t) = 0] Pr[N(h) = 0] = Po(t)Po(h)
As we are going to make h — 0, note that by definition A:
Py(h) =1—ah+o(h)
Thus we can rearrange the above expression to get

Po(t +h) = Po(t) = Ro(t)[Po(h) = 1]
o, Polt+h) — Po(t) o(h)

Y = —aly(t) + Tpo(t)

Taking h — 0, and noting that the LHS turns into a time derivative, we obtain

P()(t) = —OéP()(t>

We can then solve the differential equation

"Pys)
/OPO(S)dS— aft — 0]

which yields
Py(t) = Po(0)e™

From the fact that N(0) = 0, we immediately obtain that Py(0) = 1, thus
PO (t) = efat
which is precisely the expression of the Poisson density for m = 0.

We now show that the Poisson density is also obtained for m > 1. In particular, we are
interested in computing

Po(t+h) = Pr[N(t + h) = m]
— iPr[N(t) =m—kAN(t+h)— N(t) =k

= iPr[N(t) =m — k] Pr[N(t+ h) — N(t) = k]
= Pr[N(t) = m — k| Pr[N(h) = k]

where the last two lines follow from independence and stationarity, respectively, as we
have done with m = 0. By assumption, we only need, in the limit as h — 0, to worry
about the probabilities of events concerning zero and one arrivals. This is because the
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probability of more than one arrival in a very short time period is a term of order o(A).
Separate these in the summation:

ZPT[N(t) =m — k] Pr[N(h) = k] = Pr[N(t) = m]Pr[N(h) = 0] + Pr[N(t) = m — 1] Pr[N(h) = 1]

k=0
m

+Y " Pr[N(t) = m — k] Pr[N(h) = k|

Note that the first term on the RHS is precisely equal to P,,(t), while the second is Py(h)
(which we have already computed). The third is P,,_1(t) and the fourth is P;(h) (which
we also know by assumption). All the terms in the sum are of order o(h). Replacing for
the definitions we then have that the above expression can be written as

Po(t+h) = Py(t)Po(h) + Pp_i(t)Pi(h) + 2’": Pr[N(t) = m — k] Pr[N(h) = k]
or, using what we know from definition A
P,(t+h)=P,(t)[l —ah+ o(h)] + Pn_1(t)[ah + o(h)] + z’”: Pr[N(t) = m — klo(h)
Rearrange to obtain
Pt + h}z = Pul) _ —apm(t)+Pm<t)i}?wm_l(t)wpm_l(t)M+Z Pr{N () — m—k]$

Taking h — 0 the expression collapses to

Pu(t) = a[Pui1(t) = Pu(t)]

We now proceed by using induction. For m = 1, we obtain
Pi(t) = alRy(t) — Pi(t)]
and we know that Py(t) = e, thus we can solve for P;(t) to obtain
Pi(t) = ate™™

which, once again, coincides with the Poisson density for m = 1. The inductive step can
now be performed: taking as given that

(at)m—le—at

P _ = —
m-1(1) (m—1)!
it can be found that () .
a me—a
Pnlt) = m/!



Thus proving that A = B.

Now, for the converse. We need to show that B.3) implies A.3) and stationarity of the
increments. The latter fact follows directly from the properties of the Poisson distribu-
tion since, note, different probabilities arise only for different intervals and location is
irrelevant. Recall that for a function that is K times continuously differentiable on [z, z]
and K + 1 times on (zg, ) we can write the following expansion around zg

K+1 f (z
f(z) )+ Z 0) —20)" + Ri ()
where the remainder can be written as
R (.’L’) K+1 ( )( —r )(K+1)
K (K +1)!

for some ¢ € (g, ). This means that we can write the probability of m arrivals on some
time interval A as a first order expansion

Pon(A) = P,(0) + P, (0)A + 4n(A)

(basically, think of zy as ¢ = 0 and = as A). The remainder is a second-order term

1
un(A) = 5P (8)A°
for some § € (0, A). Note that 1,,(A) is a term of order o(A) as
/!
tim B) Pl g
A—0 A% 2

So our objective will be to take advantage of the fact that we know the probabilities to
follow a Poisson distribution and take first order expansions to get to the expressions
that are implied by definition A.

Consider now the case of m = 0 (0 arrivals). We know, from definition B that Py(A) =
A (the Poisson density). We also know that Py(0) = 1 and that Pj(A) = —ae 2.
Therefore, Pj(0) = —a. Replacing in our first order expansion, we then obtain

Py(A) =1—aA+o(A)

where the remainder as simply been replaced by o(A), and this is exactly what definition
A tells us that the probability of zero arrivals should be for A close to zero!

For m = 1, once again the Poisson density tells us that P;(A) = aAe™®A. This implies
that the derivative is P{(A) = ae™*® — a?Ae™*® = ae (1 — aA). Thus, evaluated at
zero, we obtain



Replacing in our first order expansion
Pi(A) =0+ aA +o(A)
which is, once again, what we wanted.

Finally, for m > 2, we know that

al)mem A
Py(a) = e
PL(A) = (O‘)mTe!_aAm—l(m —ad)

This means that, evaluated at A = 0 we obtain

Thus our first order expansion is simply equal to

Pu(d) = o(A)

which is what we wanted to show. O

3.2.3 Interarrival Times

One of the key properties of Poisson processes is that they induce a very well-behaved
distribution for the length of time periods between arrivals. This is a random variable
that strongly interests us, as its distribution allows us to compute important economic
variables such as the mean time that a worker should wait for another job offer to arrive.
Furthermore, there is a direct relationship between the Poisson parameter (which is the
rate of arrival - how many events are expected to happen in a certain period of time) and
the parameter that will characterise the distribution of interarrival times. Let {t, : n =
1,2,...} denote a sequence of interarrival times. Its distribution, in the case of a Poisson
counting process, is presented by the following Theorem:

Theorem 3.2.2. The interarrival times {x, : n = 1,2,...} of a Poisson process with
parameter o > 0 are identically distributed exponential random variables with mean é

Proof. Consider xq, the first arrival time. We want to know what is Pr(z; < t) =
1 — Pr(zy > t) for some ¢ € Ry. Think about what Pr(xz; > t) means - it should be the
probability that no arrival is registered in the interval [0,¢]. Thus it is equivalent to our
well-known Py (t) which, as we know, is equal to e=** (by the Poisson density). Thus we
have that

Pr(z; <t)=1—e*
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which is precisely the cdf of an exponential distribution with parameter é

Now, consider x5, we want to know the probability that xo < t for some ¢, given that the
first arrival took place at some period s. Note that

Prlze < t|lzy = s] = 1 — Prlag > t|x; = §]
and think about what the second term means: we are trying to compute the probability
that there was an arrival at period s, and then t units of time elapsed before another
arrival took place. Therefore, it is equivalent to computing the probability of no arrivals
between s and ¢ + s, which we can do using our Poisson density:
Prlzy <tl|zy = s] =1 — Prlzy > t|x; = 9]
=1—Pr[N(t+s)— N(s)=0]
=1—Pr[N(t) = 0]
=1-Pt)=1—¢"
where the second line follows from independence of the increments and the third follows
from stationarity. This can be easily repeated for any n > 3. O]

We are now endowed with all the machinery we need to analyse basic search models.

3.3 One-Sided Job Search

We start by focusing on a partial equilibrium job search model: there is an agent who is
looking for a job. Every period, there will be a probability (which can be exogenous or
endogenous) of ’being matched with a firm’ and receiving a job offer in the form of some
(for now exogenous) wage. The worker then has the opportunity to choose whether to
accept or reject the wage offer.

3.3.1 Environment

The environment is as follows:

1. We allow for a flexible temporal structure. For now, let us work with discrete time,
but allow the length of each interval to be a variable A. Thus T = {A,2A,3A,...}.
Naturally, letting A — 0 brings us to a continuous time model.

2. Let S(A) be the discount factor, as a function of the length of the time interval
that is being used. The agent seeks to maximise expected utility over an infinite

horizon -
U=EY B(A)y
t=0

where g, is total income received in period ¢t. Note that the agent is risk-neutral.
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3. The worker starts unemployed at ¢ = 0, and looking for a job.

4. While unemployed, the worker gets a random number of job offers in a period of
length A.

5. Wage offers are iid draws from some distribution F. Let W C R, denote the
support of F.. Let F/(0) =0 and F(w) = 1 (so that the support is bounded). This
implies that E(w) < oo

6. The worker gets n job offers at the beginning of each period, and considers only the
best one: w = {wy,...,w,}. Let the distribution of the best job offer be denoted
by G(w,n) = Pr(w < w) = F(w)".

7. While employed at wage w, the worker earns an instantaneous payoff equal to wA
every period.

8. While unemployed, the worker receives an exogenous unemployment benefits bA
every period.

9. For now, we shall assume that no quits are allowed, no offers can be recalled and
there is no on-the-job search.

3.3.2 Value Functions

Consider an agent who has accepted a job offer at wage w. Under our assumptions of
no quits and no on-the-job search, the value of the job today is equal to the wage that is
received plus the discounted continuation value of the job:

V(w) = wA + B(A)V (w)

What about an agent that is unemployed? Things become slightly trickier: the agent
receives the benefits today. However, at the end of the period, the agent may either
receive no job offers (and move to the next period unemployed) or may receive an arbitrary
number of positive job offers. In this case, the agent looks at the offer that yields the best
wage and compares the value of accepting that offer to the value of remaining unemployed
(and, say, wait for a better offer in the following period). Let Py(A) denote the probability
of no arrivals in a period of length A, using our previous notation, and let P,,(A) denote
the probability of m arrivals. Formally, we can write the value of unemployment as

U =ba+ B(A) [ R + Y PA) /0 " eV (@), UG (o, n)

Note that the expected value is taken with respect to the maximum wage, w, and to the
number of offers that arrive, which is also a random variable. Also, U is not a function
of wages, as it only depends on the wage in expectation.

This seemingly daunting problem becomes extremely tractable if we add a couple of
assumptions:
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Assumption 3.3.1. The number of offers that arrive each period follows a Poisson
process with arrival rate o > 0

Assumption 3.3.2. The discount factor has the form B(A) = e for some r > 0
(which is the discount rate).

Note that Assumption 3.2 implies that

p(0) =1
Jim 5(A) =0
B(A) € [0,1],YA >0

What does it imply for the value of employment? Replacing for (A) we get
V(w) = wA +e "V (w)

1
V(w)(1—e™) =wA divide both sides by A
1— e—T’A )
rV(w) =w

Thus in continuous time, rV (w) can be seen as the flow value of employment (at wage
w). The same expression could had been derived from the utility function: at time ¢, for
an agent who is employed at that wage, the present discounted value of utility is

r

V(w) = / e pds = &
¢

Now, turning to the value of unemployment, let us take advantage of what definition A
tells us about the expressions for the probability of m arrivals: separate the probability
of exactly one arrival (for which we have a different expression) from the probabilities of
more than one arrival. Note that in the case of exactly one arrival, G(w, 1) = F(w), the
distribution for the maximum wage coincides with the distribution of a single offer. This
gives us

U =bA+e ™1 —alA +o(A)U + (aA + o(A)) /0@ max{V (w), U}dF (w)

+ Z o(A) /Ow max{V (w),U}dG(w,n)]

n=2

Note that, by assumption, W is bounded. Hence the term [} max{V(w), U}dG(w,n) is
bounded as well. Furthermore, it is being multiplier by o(A), thus the product is of order
o(A). Group all terms of this order (as the sum of terms of this order is also of the same
order) to obtain

U=0A+e"[(1-aA)U + aAE, max{V(w), U} + o(A)]
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Now, separate the second term (1 — aA)U = U — aAU. Move the first U (multiplier
by the discount factor) to the LHS and group the second with the expected value of the
max (this can be done since U is not a function of w). This gives us

Ul —e ™) =bA + e "™aAE, max{V(w) — U,0} 4+ o(A)

Divide both sides by A

1 — —rA
UTe = b+ e "2 aB, max{V(w) — U,0} +

o(A)
A

and let A — 0 to obtain the final expression
rU = b+ o, max{V(w) — U,0}

which tells us that the flow value of unemployment is equal to the benefit that is received
plus the expected capital gain that may arise from exercising an option - the option of
accepting a job offer. The expectation, in explicit form, is given by

rU=0b+a« /0“7 max{V (w) — U,0}dF (w)

and we have seen before that

rV(w)

I
g

3.3.3 The Decision Rule

These two equations fully describe the behaviour of our job searcher. To see why this is
the case, note that, as remarked before, U is not a function of w, whereas V(w) is an
increasing function of the wage. This induces a reservation wage policy. That is, the
decision rule for the agent is to "accept an offer w whenever V(w) > U”. Thus there
exists w* such that V(w*) = U, and since the LHS is strictly increasing while the RHS
is constant, the worker will accept any job offering w > w*.
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Figure 3.1: Decision Rule

rvV(w)

ru

Reject Accept

w* Wage

This allows us to slightly simplify the expression for the value of unemployment: the
capital gain is only exercised whenever V(w) > U, and this will only be the case when
w > w*. Therefore, we can adjust the lower bound of the integral and get rid of the max

rU =0+ oz/ (V(w) = U)dF(w)
We can extract some further insights from the model by using the following result:
Claim 3.3.1. [”(V(w) — U)dF(w) = [ V'(w)[1 — F(w)]dw

Proof. Take the original expression and integrate by parts

/w(V(w) — U)dF(w) = [V (w) — UJF(w)[%. — /w V'(w)F(w)dw U does not depend on w

= [V(w) = UlF(@) = [V(w") = UJF(w")

= [V(0) — U]F(w) — /w V' (w)F (w)dw by definition V(w*) = U

= / V' (w)dwF () — V'(w)F(w)dw  once again from U = V (w™)

Setting & = w = F(w) = F(w) = 1 completes the proof. O

70



This allows us then to write the value of unemployment as

rU=b+ a/@ V'(w)[1 = F(w)]dw

w*

From the fact that .
V' ==
(w) =

we then obtain )
TU:b+g/ [1— F(w)]dw

r

w
and note that we have managed to make the value function for unemployment indepen-
dent from any other value function - it only depends now on the model’s parameters
and w* (which is an endogenous variable). This might not seem a big deal: after all, we
had explicitly computed the expression for V(w) as a function of the parameters, so we
could had simply replaced. It turns out, however, that in more complicated models it can
become extremely difficult to explicitly compute V' (w), but its derivative can be easily
computed as a function of the parameters. Hence the usefulness of this general result.

The model is fully characterised if we compute the only remaining endogenous variable:
the reservation wage w*. To do this, we simply take advantage of its definition: rV (w*) =
rU. Using what we have:

w*:b—kg/w[l—F(w)]dw

T Jw*

Thus we have one (integral) equation on w*, allowing us to solve for this variable as a
function of the parameters.

3.3.4 Comparative Statics

The following result describes some of the comparative statics.

ow*

o ow*
Proposition 3.3.1. - > 0, -

<0,%- >0

Proof. These results follow from application of the Implicit Function Theorem to the
equation that describes w*. Define the homogeneous equation

F(w*,a,r,b)zb—i—%/ [1— F(w)]dw —w* =0

w*
The partial derivative of w* with respect to some arbitrary parameter 6 can then be

computed as
ow* 1 OF

06— 2L
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In this case, we have that

8F__g
ow* 7

[1—F(w)—1<0

Thus the sign of the partial derivatives of w* with respect to any parameter will coincide
with the sign of the partial derivative of F' with respect to that parameter. This means
we just need to check the sign of %—g. We then have that

oF
—=1>0
b
oF a [
oF 1 [?
which concludes our proof. O

The intuition for these results is the following:

1. When the unemployment benefits rises, the value of unemployment increases. Thus
the outside option of not working becomes more valuable, making the worker de-
mand a higher reservation wage.

2. When the discount rate increases, the worker values the future less and is more
concerned with current payoffs. Therefore, he will be more willing to take a lower
paying job today, and is less sensitive to the fact that he will have to stick with
that (low paying job) forever. This is quite intuitive: a more patient agent is likely
to reject more offers until he finds one that pays a high enough wage.

3. When the rate of arrival for job offers increases, the worker receives, on average,
more offers per period. Therefore, he can afford to become ’pickier’ in selecting the
best offer. This leads to an increase in the reservation wage.

It is also interesting to look at the rate of exit from unemployment. Since the number of
offers that arrive in each period is independent from the wage that is associated to those
offers, the hazard rate of unemployment is equal to

H=a[l - F(uw")]

That is, the rate of arrival of offers times the probability that they are accepted. How
does this rate change with o? In principle, the answer to this question is ambiguous: on
the one hand, the worker gets more offers each period, which would increase the chances
of leaving unemployment. But, on the other, as we have seen, this also makes the worker
become choosier.

Claim 3.3.2. g—g > 0 if F is log-concave, i.e., if% <0.
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3.3.5 The Discount Factor

The model unravelled very nicely due to the specific functional form that we assumed for
the discount factor, without any discussion. Are the functional forms we obtained for the
value functions without loss of generality? It turns out that they are extremely robust
to the choice of discount factor. Consider, for example, a more ’traditional’ specification

for the discount factor: )

Bla) = 14+7rA

The value of unemployment can be written, as before, as

U

= TTA [bA + +(1 — aA)U + aAE, max{V(w),U} + o(A)]
with the caveat that now the instantaneous payoff b is also discounted. Multiply both
sides by 1 4+ rA and rearrange to obtain

U+rAU = bA + aAE, max{V(w),U} + U — aAU + o(A)
Rearrange, divide both sides by A and make it go to zero to obtain
rU = b+ o, max{V(w) — U,0}

which is exactly the same we got before.

3.3.6 Example with two Poisson shocks

Suppose now that the worker can die (or leave the labour market) at any point in time.
This shock follows a Poisson distribution with rate of arrival given by d. As before, let
us start by setting up the problem in discrete terms for a time period of arbitrary length
A. This new shock is realised before the arrival of job offers (this assumption helps with
the math but is, in fact, irrelevant when A — 0, any timing assumption yields the same
results).

Let us work with the different specification of the discount factor, S(A) = {75 (once
again, this is irrelevant when we proceed to continuous time, and yields the same results).
Assume that once the worker dies, he gets 0 forever. Therefore, the 'value of death’ is

simply equal to zero
D=0

If employed, the worker receives the wage payoff wA. Then, with probability dA + o(A),
he dies and proceeds to D. With probability 1 — A + o(A), he does not die and earns
the continuation value of employment V(w). We disregard the probability of more than
one arrival of the ’death event’ as a term of order o(A). Thus we can write the value of
employment as

1

V(w) = A [WA + 5A.0+ (1 — AV (w) + o(A)]
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Rearrange to obtain

rAV(w) = wA — AV (w) + o(w)

Divide by A and take limits to arrive at the final expression
(r+0)V(w) =w

Note that the rate of arrival of death, §, now acts as a discount factor. It is as if the
rate at which the agent discounts the future has increased. This is extremely intuitive:
after all, there is now an event that makes the future be worth zero, with probability dA.
Therefore, the worker should value the future less.

What about the value of unemployment? The reasoning is the same, but now our timing
assumption gains relevance: the worker only moves to the ’job choosing’ stage with
probability 1 — dA 4+ o(A). Once again, collapse all the terms concerning more than one
arrival:
1
1+7rA

Rearrange to get

U:

[bA + 0A.0 + (1 = 6A) {aAE, max{V(w),U} + (1 — aA)U} + o(A)]

(14+rA)U =bA + (1 — 0A)aAE, max{V(w),U} + (1 — JA)U — (1 — 0A)aAU + o(A)
Rearrange a bit further and divide everything by A

A
(r 4+ 6)U = b+ (1 — 6A)aE, max{V(w) — U, 0} + %
Let A — 0 to obtain the final expression
(r+0)U = b+ aE, max{V(w) — U,0}

Once again, the only thing that changes with respect to the baseline model is the ’incre-
ment’ on the discount factor. Thus the model is, essentially, the same. It is easy to see
that the worker will, once more, follow a reservation wage policy (as U does not depend
on w and V(w) is strictly increasing on this variable). Thus Jw* such that V(w*) = U.
This means we can rewrite the expression for the value of unemployment as

(r+6)U—b+a/w(V( ) — U)dF (w)

We can simplify it further by noting that V’(w) = — and applying the result on Claim

3.1 /

(r+46)U

Thus the reservation wage solves

(r+0V(w)=U

a w
= 1—-F
S w b+7”+5/w*[ (w)]dw



and everything follows as before.

What if the two shocks were correlated? In principle this would have a decisive impact
on features such as the timing of the shocks. It turns out that this is irrelevant. Even if
shocks are correlated, the correlation terms are of order o(A), hence they disappear once
we move from discrete to continuous time, A — 0. When dealing with an instantaneous
interval of time, correlation (and, more generally, the timing of the shocks) becomes
irrelevant.

3.4 Equilibrium Search

So far, we have been dealing with one-sided partial equilibrium search models: the worker
receives an exogenous stream of offers each period, and each of these is associated to a
wage that follows some exogenous distribution. We now proceed to make the matching
and wage determination process endogenous. The seminal work in this field was un-
dertaken by Peter Diamond with his 1982 ’Coconut Model’. This was then successfully
translated to a labour market general equilibrium model by Mortensen and Pissarides in
1994.

3.4.1 Diamond 1982 - Aggregate Demand Management in Search
Equilibrium (Coconut Model)

Consider an island populated by agents who like eating coconuts. Each of them can climb
a tree to get a coconut. However, an agent cannot open a coconut alone (or he cannot
eat the coconuts taken by himself) - he needs another agent to do it. Similarly, he can
only eat coconuts taken by other agents. Therefore, once he gets a coconut, he has to
look/search for another agent to exchange coconuts with before consuming.

Environment

Formally, the environment is as follows:

1. Time is continuous, T = [0, 00)
2. There is a continuum of agents of measure 1
3. There is a single indivisible consumption good (the ’coconut’)

4. The production technology is as follows: the arrival of production opportunities
(or ’trees’) is a Poisson process with rate a. Once the agent faces a production
opportunity, he may either skip or execute it (climb the tree). If the agent executes,
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he produces one unit of the good and pays a production cost ¢ ~ G(-), where
supp(G) = (¢, ¢) and ¢ > 0 (this is the cost of climbing the tree)

5. Agents face an inventory constraint of one unit of the good (they cannot carry more
than one coconut at the same time)

6. Agents cannot consume the good they produce

7. From the standpoint of an individual agent, trading opportunities (meetings with
other agents) arrive from a Poisson process at rate b

8. Agents get utility v from consuming a coconut and discount the future at rate r > 0.
They seeks to maximise the following utility function

U= Y e {lL(t; € To)u—1(t; € To)c}
=1

where 7, denotes the subsets of the time space where the agent eats a coconut, and
7. are all subsets of the time space where the agent climbs a tree (produces). Note
that even though time is continuous, the model dynamics are lumpy in the sense
that the way the agent extracts utility (or pays a cost) is discrete (only happens
at certain instants). There is no such thing as a continuous flow of utility as in
the previous model. The expectation operator is taken over the random dates of
consumption/production and the random variable ¢ (thus w is a known constant).

Assumption 3.4.1. u > ¢

Obviously, without the previous assumption, no agent would ever produce coconuts. We
further assume that there is no credit/IOU’s in this economy. Unlike Arrow-Debreu Wal-
rasian settings, in which agents can trade credit contracts, trade can only arise physically

in this model: you can only trade if you give a coconut and you get one in return. There
are no promises or futures contracts.

The Congestion Externality

In this model, we can divide agents in two main groups:

e The Production Sector consists of agents who are looking for production oppor-
tunities. These can be seen as 'unemployed agents’.
e The Exchange Sector consists of agents carrying coconuts and looking for some-

one to trade with. These are ’employed agents’.

Let e denote the measure of agents in the exchange sector, so that there are 1 — e agents
in the production sector. Let b(e) be the Poisson rate of arrival of trading opportunities.
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Assumption 3.4.2. V/(e) > 0 and b(0) =0

The above assumption tells us that the more agents are there in the exchange sector, the
easier (or the faster) it is to conclude a trade. Furthermore, it also tells us that if the
measure of agents in the exchange sector is zero, then it is impossible to conclude a trade
(as no matches arrive).

Assumption 3.4 is the heart of the model, in the sense that, as we will see, it is what
makes the analysis of this model interesting in the first place. It represents a congestion
externality: the more agents there are looking for trades, the easier it is conclude a
trade. Even though it depends on the measure of agents wanting to trade, each agent
will individually treat it as a parameter (as each agent is a measure zero atom). This
already hints at potential inefficiencies that generate scope for government intervention.

The role of b(e) is similar to that of a production function. It induces, in fact, a matching
function. Let m(e) denote the number of meetings (‘matches’) that take place between
agents in the exchange sector at every instant. This can be measured as eb(e) - that is,
the total number of agents in the sector times the number of meetings that take place.
Thus we have that

m(e) = eb(e) = ble) = mie)

As we would expect, the rate of arrival of matches is equal to the number of total matches

divided by the number of agents that are looking for a match. Notice that if the matching

function were homogeneous of degree one, m(Ae) = Am(e), then the matching rate...
m(Ae)

b(Ae) = o = b(e)

...has 'constant returns to scale’. This is only consistent with 0’(e) = 0. This means that
the assumption b'(e) > 0 is consistent with increasing returns on the matching process:
an increase in the number of agents in the exchange sector makes the total number of
matches increase more than proportionally, hence the externality.

One way to justify this assumption is by considering that there are, in fact, two islands:
one where agents trade, and another where agents produce. Therefore, there are no
wasteful matches: agents looking for a trade are never matched with agents who want
to produce. Relaxing this assumption would be a way to eliminate the externality, as
then the effective (productive) matching rate would not depend on the number of agents
looking for a trade but rather on the total population of the economy, which is constant.

Value Functions

Now that the environment has been presented, let us proceed to analyse the model. As
in the labour search environment, we construct the value function for ’employed’ agents
(those in the exchange sector) and for 'unemployed’ (those looking for trees). Let W,(¢)
denote the value for an agent who is carrying a coconut and looking for a trade. Once
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again, we start by considering the discrete problem of an agent on a time interval [t, ¢+ A
and then proceed by letting A — 0. Since the rate of arrivals is Poisson, we can ignore
the probability of more than one arrival by time period as a o(A) term. Let e=™® be the
discount factor.

With probability bA the agent is matched with another one and may choose either to
trade and get u + W, (t + A), where W, is the value of being unemployed (and looking
for another coconut) or not to trade and keep looking, thus getting W,(t + A). With
probability 1 — bA, the agent does not find a match and keeps looking, getting the
continuation value of remaining in the exchange sector W,(t + A).

W,(t) = e {bA max{u + Wy(t + A), Wo(t + A} + (1 — bAYW.(t + A) + o(A)}

We assume, for now, that trading is always better than keeping searching, so that max{u+
Wy (t+A), W (t+A)} = u+W,(t+A). This assumption will be justified shortly. Subtract
e ™AW, (t) from both sides to get

Wo(t)(1—e™™2) = e ™2 {bAfu + W, (t + A) — W ()] + (1 — bA) W (t + A) — Wo(t)] + o(A)}
Divide everything by A

1—e 8 We(t+A) = Wo(t)  o(A)
A A A }

and notice that when we let A — 0, the second-to-last term becomes the time derivative
of We(t). Taking limits then leaves us with

rW.(t) = blu + W, (t) — We(t)] + Wa(t)

W.(t) = {b[u F Wt + A) — Wa(8)] + (1 — bA)

Once again, the above value function has an ’asset pricing interpretation’ the LHS is
the value of holding the asset for an additional instant (its value times the instantaneous
interest rate). The RHS decomposes that value into a capital gain (the value of exercising
the option of selling the asset) plus the time-change in the value of the asset.

For an agent in the production sector, with probability aA he finds a tree and learns of
the cost of climbing it. He may either climb it, paying the cost and becoming employed
—c+ W.(t+ A), or he may keep looking for trees, earning W, (t + A). With probability
1—aA, he does not find any tree and keeps looking, earning W, (t+ A). Thus the discrete
value function is

Wy (t) = e [aAE, max{W,(t + A) — ¢, W, (t + A)} + (1 — aA)W,(t + A) + o(A)]
Subtract e ™AW, (t) from both sides
W.(t)(1 — e = e " aAE, max{W,(t + A) — W,(t) — ¢, W, (t + A) — W, (1)}
+ (L= al)[Wy(t + A) = Wu(8)] + (A)]
Divide by A
Wu(t)# = e " aB. max{W,(t + A) — W, (t) — ¢, W (t + A) — W, (1)}
Wy (t+ A) — Wy (t) N o(A)

+ (1 —ad) A A ]
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and take limits. Notice that, once again, a time derivative arises in the second-to-last
term. This leaves us with

W, (t) = aB, max{W,(t) — W,(t) — ¢, 0} + W,(t)

The Decision Rule

Notice that the only decision that agents make is whether to climb the tree or not. For a
given ¢, should I climb the tree I have just found or keep looking for a shorter one, whose
cost of climbing is lower? Notice that neither W,(¢) nor W,(t) depend on ¢ (the latter
only depends on its distribution). Clearly, from the expression for W, (), the agent will
only climb the tree if

We(t) —Wu(t) —c>0

Thus, once again, we have a reservation strategy. That is, there exists a ¢* such that
= We(t) — Wy(t)

The agent will climb any trees such that ¢ < ¢* and will not climb trees such that ¢ > ¢*,
preferring to look for another tree instead. Notice that the problem is not necessarily
stationary, hence the decision rule may be time-varying. Define then the function c¢*(t)
to be given by

() = We(t) — Wy(t)

Remark 3.4.1. At this stage, we can justify our previous assumption that u + Wy (t) >
We(t). Notice that this is equivalent to u > W(t) — W,(t) = ¢*(t). Clearly, it is never
optimal for an agent to climb a tree whose cost exceeds the utility of trade.

Equilibrium

Using the expressions we have found for the value functions, and subtracting one from
the other

T[We(t> - Wu(t)] = b[u+ Wu(t) - We(t)] - CLEC maX{We<t> - Wu(t> ) 0} + [W6<t) - Wu<t>]
Replacing for ¢*(t) gives us
rc*(t) = blu — ¢*(t)] — aE. max{c*(t) — ¢,0} + ¢*(t)

or, writing the expectation explicitly, and noting that we can replace the max operator
by restricting the upper bound of integration to ¢*(¢), we obtain

*(t)

re(8) = bu — " (8)] — a / U = ddG(e) + & ()

a differential equation on c¢*(t).
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The model dynamics will be fully summarised by this dynamic policy ¢*(¢) and its in-
teraction with the aggregate state variable, e(t). Clearly, ¢*(¢) will crucially depend on
b, which is in turn a function of e(t). But this variable, the number of agents in the
exchange sector, will depend on how many agents decide to climb trees, which in turn is
determined by ¢*(¢).

Let us think of the flows between sectors:

1. Exchange — Production - At every instant, there is a total of e agents in the
exchange sector, who meet at rate b(e). Therefore, a total of eb(e) agents meet and
undertake trades, moving to the production sector.

2. Production — Exchange - A total of 1 —e agents ‘'meet trees’ at rate a. However,
the number of transitions is not equal to a(1—e) as not all agents decide to climb the
trees they meet. Agents only climb trees whose cost of climbing is lower than ¢ < ¢*.
Thus the fraction of trees that are actually climbed is equal to Pr(c < ¢*) = G(c¢*).
This means that a total of a(1 — ¢)G(c*) agents move from the production to the
exchange sector.

This suggests that the law of motion for people in the exchange sector is equal to arrivals
minus departures, or

é(t) = a[l —e()]G[c"(1)] — e(t)ble(t)]
a differential equation for e(t). This generates a system that fully describes the model’s
dynamics. This prepares us for defining an equilibrium for this model:

Definition 3.4.1. A Search Equilibrium is a path {c*(t),e(t)}+e7 that satisfies

(1)
rc*(t) = ble(t)][u — c*(t)] — a/ [c*(t) — c]dG(c) + ¢*(t) (E1)

é(t) = all — e()]G[c"(1)] — e(t)ble(t)] (E2)

Steady States and Comparative Statics

Our definition of equilibrium is extremely flexible, in the sense that it does not restrict
the analysis of steady states.

Definition 3.4.2. A steady state is a stationary equilibrium, a pair {c*, e} (a constant
path) satisfying (E1) and (E2) and such that

() = é(t) = 0

Note that the set of steady states is a subset of the set of equilibrium paths. For simplicity,
we now proceed to finding the steady states of the model. Take the equilibrium conditions
and impose ¢*(t) = é(t) = 0. This allows us to write the equilibrium conditions as

b(e)u —a fcc* (¢* — ¢)dG(c)

¢ = e (SS1)
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eb(e)
G(c") = ——— SS2
)= e (55
The steady state is obtained by solving this system of equations for (¢*, e). Note that the
relationship between these two variables will depend on the properties of b(e).

Proposition 3.4.1. %%b(t):o is proportional to V' (e).

Proof. Given that this is the derivative of ¢* with respect to e given stationary reservation
costs, we can derive this result from (SS1) only. Multiply both sides by r + b(e) and
differentiate with respect to e to obtain

oc* , oc* , . . < Ocr
5 —b(e)u—aae (c"—=c")g(c") —a Ny

b(e)c” + [r + b(e)]

dG(c)

Naturally, the second term on the RHS is equal to zero. Also note that % does not depend
on ¢, hence the last term is simply equal to a%-G(c*), since G(c) = 0. Rearranging for
the derivative we are interested in leaves us then with

oc* u—c*

de b/(e)r +b(e) + aG(c*)

Since u > ¢*, this derivative shares the same sign with ¥'(e). O

Thus the way the reservation cost changes shares the sign with the derivative of the
matching rate. Under our assumption of a positive congestion externality, b’ > 0, agents
will be willing to climb higher trees if there are more people to trade with: as the cost of
trading (measured by the time that it takes to find a match) decreases. Basically, your
investment pays off more quickly, thus people are more likely to invest in climbing trees.

Proposition 3.4.2. %

et)=0 < 0 ’Lf b”(e) < 0.

Proof. We found, in the proof of Proposition 3.2 that

V(e)c" + [r+ b(e)] %Ce* =b'(e)u— aG(c*)aace*

Differentiate again with respect to e to obtain

oc* o*c* . Oc* e NS
5 + [+ b(e)] 902 +b'(e) 50 b'(e)u — aG(c") 507 ag(c") <86)

02 b(e)(u—c*) —a (%) g(er) — 20/ (e) %
Oe? r+b(e) + aG(c*)

V'(e)c" + b (e)

where g is the density associated with G. Rearrange to obtain

Clearly, b”(e) < 0 is sufficient for the above derivative to be negative. O
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The logic is analogous to that of the previous proposition: if there are decreasing marginal
returns over the matching rate, the same is true for the relationship between ¢* and e.
Some comparative statics follow, for a stationary reservation cost

Proposition 3.4.3. IfV/(e) > 0, then

o Gle=0 >0
o 5 lin=0 <0

o Lm0 <0
Proof. Analogous to that of Proposition 3.2. [
Intuition:

1. If the utility of trading increases, people are willing to climb higher trees. Not
surprising.

2. If the rate of arrival of trees increases, people become ’choosier’ with respect to the
trees they climb. The logic is analogous to that of the increase in the rate of arrival
of job offers - the reservation wage would increase.

3. If the discount rate goes up, people value trading less (as there is a time gap between
producing and trading). Thus the effective payoff of climbing a trade went down,
meaning that people will climb less trees.

If the number of agents in the trading sector is constant, on the other hand, we still
obtain similar results:

Proposition 3.4.4. 2|0 > 0 if b/(e) > 0

Proof. A stationary measure of agents in the exchange sector implies that we should
work with (SS2). Adopt the same approach and totally differentiate the expression with
respect to e, after multiplying both sides by a(1 — e)

oc*

—aG(c*) 4+ a(l —e)g(c") e

=b(e) + eb'(e)

Rearranging
oc* ble) +eb(e) + aG(c") -0
de a(l —e)g(c*)

O

Note that this condition is slightly weaker, as b'(e) > 0 is only sufficient, but not necessary
(as it was before). The intuition is the same: more agents in the exchange sector — easier
to trade — people climb more trees.
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Dynamic Analysis

Does a steady state exist in the first place? As we will see, this is not exactly guaranteed .
Clearly, ¢(t) = é(t) = 0 generates two types of relationships between ¢* and e. (SS1) and
(SS2) define two locii of pairs (¢, e) in the space of equilibrium paths: ¢(t) = 0 = ¢* = f(e)
and é(t) = 0 = e = h(c*). A steady state only exists if both equations are simultaneously
satisfied. That is, if the two locii cross. We proceed to analyse each of the locii separately.

1. ¢(t) = 0. Recall that

. bleu— af;*(c* — ¢)dG(c)
‘- r+b(e) (S51)

Under the assumptions that ¢ > 0 and b(0) = 0, this curve passes through the origin.
That is, (0,0) € {(e,c*) : ¢* = f(e)}. Propositions 3.2 and 3.3 also establish that,
if b(e) is continuous, increasing and concave, then this function will be continuous,
increasing and concave. Furthermore, it is bounded above by u. Why? Exactly
because it is never optimal to have ¢* > u. Optimality of behaviour implies that
¢ < u,¥e € [0,1]. Furthermore, it can be shown that if ¢* > f(e), then é(¢) > 0
and, conversely, if ¢* < f(e) then ¢(t) < 0 (this is in fact hinted by Proposition 3.2,
but we shall not prove it here). The dynamics of this locus are presented in Figure
3.2.

Figure 3.2: The ¢* = f(e) locus

c*

| R e

'In terms of active steady states, those where e > 0. The trivial inactive steady state always exists.
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2. é(t) = 0. We saw that

Ger) — )

=g (SS2)

Defines the e = g(c*) relationship. Note first that while the origin belongs to this
locus, there may be a discontinuity at e = 0. This is because G(c¢) = 0 for any
¢ < ¢. However, since b(0) = 0 and b'(e) > 0, having G(c¢) = 0 is only compatible
with having e = 0. Thus there is a discontinuity point at 0 (if ¢ > 0), but the origin
does belong to the locus. Once the origin is dealt with, the curve ’starts’ at the
point (0,¢). As ¢* — oo, G(¢*) — 1, and the expression becomes

a(l —e) = eb(e)

Thus, in the (e, c*) space, the curve e = h(c*) will have a vertical asymptote at €,
which may or may not be 1. The shape of the curve can be inferred through some
calculus. The first derivative of e with respect to ¢* is obtained by differentiating
the expression with respect to ¢*:

Oe Oe Oe
e

ag(c)(1—e) — aG(C*)ac* = b(e) B +

Rearranging gives us

de ag(c*)(1 —e)

dcr ble) + eb/(e) + aG(c*)

so that having &'(e) > 0 is sufficient for the above derivative to be increasing.
Regarding concavity, differentiate the expression again and rearrange to obtain

Pe _ag/(c)(1 —e) = 2ag(c") 2 — [20/(e) + el ()] (2)°

o(c*)? b(e) + aG(c*) + el (e)

So that in general the sign of the derivative will depend on the sign of ¢’(¢*) and
b"(e). For graphical analysis purposes, assume that the sign of the derivative is
positive, so that e = h(c*) is shaped as a convex function. Once again, with some
further restrictions we can show that e > h(c*) = é(t) < 0 and e < h(c*) = é(t) >
0, so that contrary to what happened with the ¢* = f(e) locus, this variable is
stable, in the sense that its value tends to return to the stationary locus upon any
shock/deviation. The dynamics are summarised by Figure 3.3.
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Figure 3.3: The ¢* = f(e) locus

e _bar

Putting everything together, and maintaining the ¢’(e) > 0 assumption gives us a possible
scenario for the model dynamics:

Figure 3.4: Equilibrium Dynamics

e_bar
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In this case, there are three possible steady states: (550,551,552): a degenerate steady
state at the origin, with no production, a low activity steady state and a high activity
steady state. Note that none of them may be stable, and we shall abstract of any stability
properties (as the analysis would require much stronger assumptions than those we have
made so far).

Welfare and Aggregate Demand Management

It is also interesting to note how crucial is the ¥'(e) > 0 assumption: if we had imposed,
for example, that b(e) = b for e > 0 and b(0) = 0 then the ¢* = f(e) locus would be a
horizontal line at b with a discontinuity at the origin. Therefore, only two steady states
would remain: the origin and an intermediate steady state with an activity level between
SS1 and SS2. This suggests that it is precisely the existence of the congestion externality
that opens the possibility of what Diamond called aggregate demand management
(whose defense was the whole point of the article): due to the existence of the externality,
the market is subject to coordination failures. That is, the economy can become stuck
on low activity steady states when high activity ones are available, due to the fact that
individuals do not take the externality into consideration when deciding what reservation
cost of climbing trees should they set. The higher the cost they choose, the more activity
there will be on the exchange sector and the easier it becomes for them to trade. But
individuals do not account for that, hence the economy may end up trapped in inefficient
steady states.

Clearly, the First Welfare Theorem does not apply in this context, due to several reasons:
first of all, the framework is not Walrasian - there is no such thing as a 'market’ where
prices are set (there are not even prices in this model). Secondly, there is a non-pecuniary
externality, hence even if markets existed, they would not be complete.

It should be emphasised that no steady state may exist under certain distributional
assumptions for G. Furthermore, even if steady states exist, as in Figure 4, none of them
may be stable (excepting the non-active steady state at the origin). Thus it is possible for
an economy to remain in equilibrium forever without ever converging to a steady state.

Welfare Analysis and the Planner’s Problem

We conclude this section by undertaking some Welfare Analysis, motivated by the
presence of the externality. Clearly, levels of activity and reservation costs chosen by a
social planner will not coincide with those induced by a private equilibrium due to the
fact that, as explained, agents do not account for the fact that b is a function of e. Define
the instantaneous payoff for the planner as

Ulc*(t),e(t)] = e(t)ble(t)]u — a[l — e(t)] /C cdG(c)
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Interpretation? At each instant, e(t)b[e(t)] agents trade and earn utility u. At the same
time, a[l — e(t)] agents come across trees and incur in an expected cost ¢, which is
the expected value of ¢ between ¢ and the reservation cost ¢*(¢). The planner seeks to
maximise the present discounted value of social welfare subject to the law of motion for
agents in the exchange sector. This suggests that the solution to this problem will, in
fact, be a Constrained Pareto Optimal allocation: the planner chooses the level of
activity and reservation cost subject to the constraint that such sequence {e(t), ¢*(t) }+>o
must be supportable as a private equilibrium. The problem is thus

Wo = {e(t)r,?*%g){}tzo/o e UL (1), e®)at
subject to
é(t) = a[l —e(®)]G[c"(t)] — e(t)ble(t)]
e(t) € 10,1]

e(0) = eg given

Before attacking this problem, note the following:

Remark 3.4.2. [t turns out that any steady state that arises as a private equilibrium
is plagued by too little activity. An alternative way to undertake welfare analysis is too
look only at what happens on the steady state. Let W denote the present discounted value
of social welfare at the steady state. We can write the objective function of the planner
evaluated at a steady state (c*,e) as

U(c*,e)

r

W :/ e "U(c*, e)dt =
0

where (c*,e) solve (SS1), (SS2). Diamond shows that, as long as the equilibrium is
interior (i.e. active, e > 0), we generically have

ow

oc*
Thus no steady state arising as a private equilibrium is efficient, as there are social welfare
gains from making agents climb higher trees and trade more. The drawback of this type

of analysis is that by focusing on the steady state only, it completely ignores transitional
dynamics. Hence it should be seen as a minimal test for necessity of policy intervention.

>0

Back to the dynamic problem, the (present value) Hamiltonian for the planner’s problem
is the following

Ho=e"Ule"(t), e(t)] + u(t){all — e(®)]G[c" ()] — e(t)ble(t)]}

The planner chooses the control ¢*(t), while e(t) is a state variable 2. u(t), the multiplier,
is the costate variable and represents the value of an additional agent on the exchange

2It is relevant to emphasise that e(t) is an endogenous state, hence it is listed as a control variable
for the planner in the original statement of the problem.
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sector along an optimal path for the planner. The FOC are

oM _
de
oM _ .
de a

0

That is
—e "a[l —e(t)|c" (t)gle" (1)] + p(t)all — e(t)]g[c* ()] = 0

e (1)
et {b[e(t)]u +e(t)b'le(t)]u + a/ ch(c)} — u(t) {aG[c*(t)] + ble(t)] + e(t)V[e(t)]} = —pu(t)

This looks rather messy, especially because both conditions directly depend on the value
and rate of change of a variable that does not interest us directly - the costate. Thus we
aim to eliminate that variable from the problem. The first FOC can be simplified so as
to obtain

et (1) = p(t)
It must hold for all ¢, so that taking logs

—rt +log c*(t) = log pu(t)

and differentiating with respect to ¢

cr(t) )

c(t) ()
Now, divide both sides of the second FOC by pu(t) to get

—r+

6—rt

u(t)

0
{b[e(t)]u +e(t)b'le(t)]u + a/ ch(c)}—{aG[c*(t)} +ble(t)] + e(t)V[e(t)]} = ——=

Notice that we can replace the LHS by what we have found by manipulating the first
FOC. Furthermore, from its original form, we know that

So that replacing both this term and the LHS leaves us with a condition that no longer
depends on the costate

1
c*(t)

or, rearranging and simplifying

0 :
{b[e(t)]u +e(t)b'[e(t)]u + a/ cdG(c) } —{aG[c*(t)] + ble(t)] + e(t)V[e(t)]} = r—

0
c¢*(t) = rc*(t) — [u— " (O){ble(t)] + e(®)b'e(t)]} + a/ ["(t) = cJdG(c)  (PP)

88



(PP) along with the law of motion of e(t) define the solution to the planner’s problem.
Recall that in the private equilibrium, the equilibrium conditions were, precisely, the law
of motion for e(t) and we had

(1)
¢ (t) = rc*(t) — ble(t)][u — " (t)] + a/ [c*(t) — ]dG(c) (E1)

Clearly, these two conditions look strikingly similar. What is the only difference? Pre-
cisely the 0'[e(t)] term, which enters (PP) but not (E1)! They only coincide when
b'le(t)] = 0, when there is no externality. In terms of dynamics, the planner solution
generates a ¢* = f(e) locus that is above the one generated by the private equilibrium.
Hence the high activity steady state will feature even more activity.

What can policymakers do to correct this market failure? Some potential policies are:

1. Subsidising production, giving a subsidy to each agent who climbs a tree.
2. Imposing a Pigou tax on agents who do not climb trees.
3. Subsidise trade.

4. etc.

3.4.2 Mortensen & Pissarides 1994 - Job Creation and Job De-
struction in the Theory of Unemployment

M-P take Diamond’s coconut model and apply it to a labour search setting. As mentioned
in the introduction to this section, this model will endogenise not only the rate of arrival
of job offers but also the wage that is bundled with each of these offers.

The argument put forward by the authors is that congestion externalities, in the same
spirit of those in the Diamond model, are extremely common in the labour market. If
more firms are looking for workers, it becomes easier to find a job, while the reverse is
true when more unemployed workers look for jobs.

Environment

The environment is as follows:

1. There is a continuum of workers of measure one, with identical preferences. Each
worker can be employed or unemployed. Let u denote the measure of unemployed
workers.
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2. There is also a continuum of firms, measure one. Each firm can hire one worker.
Firms can be vacant or filled, let v denote the measure of vacant firms.

3. Firms and workers interact on a frictional labour market. Meetings between workers
and firms are ruled by a constant returns to scale matching function m(u,v). The
matching function satisfies my, my > 0 and mqq1, mas < 0.

4. Time is continuous and agents are infinitely lived.

5. Matching is random and takes place only between unemployed workers and vacant
firms. That is, employed workers and filled firms do not search/are not matched.

6. Production takes place when a firm and a worker are matched. Let p denote the
output from a match.

7. Let A be the Poisson rate of a productivity/destruction shock that affects matches.
With arrival rate A, a shock hits the match between worker and firm and makes
productivity become equal to zero forever.

For a vacant firm, the probability of finding a worker is equal to the total number of
matches divided by the number of firms that are looking for workers, hence w Since

m is CRS, hence homogeneous of degree one in both arguments, we can write

Pr[finding a worker] = m(u,v) _ m (E, 1>
v v

Let 6 := 2, this then allows us to write

w(2) = (31) =0

That is, the probability of a vacant firm finding a worker does not depend on the unem-
ployment /vacancy levels, but rather on their ratio # due to the CRS structure we have
imposed.

For a worker looking for a vacant firm, the probability of coming across one is equal to

—m(Z’”). Once again, we can take advantage of CRS to write

m(u,v)

= (1,2) = m(1,6) = bm (% 1) — 0g(0)

u

Thus the contact rates for firms and workers are ¢(f) and 0q(0), respectively. 6, the
ratio of vacancies to unemployed workers can be read as a measure of market tightness
(i.e., how easy it is to find a job or not). We therefore increment the environment with
the following assumption:

Assumption 3.4.3. Unemployed workers contact vacant firms at Poisson rate 0q(6).
Vacant firms contact unemployed workers at Poisson rate q(6).
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Remark 3.4.3. At this stage, we already have enough information to conduct some
analysis on how the contact rates respond to changes in market tightness. Note that

, 1 1

Since my > 0. Thus an increase in the vacancy/unemployment ratio decreases the rate
at which firms contact workers. This is rather intuitive: 6 1 means that either there are
less workers looking for firms or there are more firms looking for workers. Hence it is
more difficult for an individual firm to come across a worker. We also have that

< 16a(0)] = 4(6) — 64'6) = m (% 1) ~ o (% 1)

In principle, this sign is ambiguous. We can, however, take advantage of the fact that m
1s homogeneous of degree one to apply Euler’s Theorem for homogeneous functions and

write
LN_L (LY, (L
m 0’ - le 0’ ma 0’
d 1 1 1 1 1 1
@[‘9(](6)] = gml (§,1> + mo (5,1) — aml <5, ].) = My (5,1) >0

Since my > 0 by assumption. Thus the effect of less unemployment /more vacancies on the
contact rate for workers is the opposite, as we would expect. These effects are analogous
to the t'(e) > 0 assumption in the Diamond Model, with the caveat that they now have
opposite signs to different types of agents in the market (workers and firms).

Thus

Unemployment and the Beveridge Curve

The productivity /destruction shock aims at introducing turnover in the model and is a
proxy for job destruction in the economy. This means that, given the current knowledge
of the model, we can already derive the law of motion of unemployment. At each instant,
(1 — u) workers are employed and are subject to the destruction shock with rate A, hence
A(1 — u) workers become unemployed. At the same time, u workers are unemployed and
contact vacant firms at rate 6q(6), thus

=A1—u)—0q(0)u

At this point, we are assuming that any firm hit by a destruction shock fires the worker
and any worker who contacts a firm accepts the job offer. These assumptions will be
justified shortly. Note that in the steady state, when 1, a relationship between v and u

arises through 6:
A

YT N 0q(0)
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Since 0q(#) is a positive function of 6, it is a positive function of v. Hence the above ex-
pression defines a negative relationship between v and v - this is the so-called Beveridge
Curve.

Figure 3.5: Beveridge Curve

Vacancies

Unemployment

Value Functions of the Firm

We proceed by deriving the value functions for this model. Note that now we have two
types of agents, and each of them can be in one of two states. This means that we will
have a total of four different value functions to analyse. We start by looking at firms.

These can either be filled or vacant. Assume that, while searching for workers, firms
must pay a search cost equal to pc > 0. There is a large number of firms that can choose
to enter the market (there is free entry). This means that, in equilibrium, we will have
the value of vacancies equal to zero: if positive, firms would keep entering the market
until that value comes down to zero, and if negative firms would leave the market. These
dynamics will become clearer in a moment.

Let V denote the value of a vacant firm and J the value of a firm who has filled a vacancy.
Once again, we start by discretising the problem and then letting the time interval go to
zero. Assuming that firms share the same discount factor as workers, 5(A) = ﬁ, a
firm with an open vacancy pays ¢pA per time period. With probability ¢(0)A, it contacts
a worker and fills the vacancy, earning the continuation value J(t + A). With probability
1 —q(9)A, it fails to contact a worker and continues with V(¢ + A). Thus

V(1) = T+ a0 AT+ )+ [1 = g @AV (¢ + A) +o(A)]
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Rearranging and dividing both sides by A yields

rV(t)=—cp+q@)]Jt+A)=V(t+A)]+
So that taking limits to zero
rV(t) = —cp +q(O)[J(t) = V()] + V(1)

For a firm which has filled a vacancy, it earns p and pays some wage w per time period A.
With probability AA, it is affected by a negative productivity shock and fires the worker,
earning V (¢t + A). With probability 1 — AA, it remains filled and earns J(¢t + A). The
value is therefore

J(t) !

- 1+7rA

[(p— WA + MV (t 4+ A) 4+ (1 — AA)J(t+ A) + o(A)]

Rearranging and dividing by A

rd(t)=p—w+AV({E+A)—Jt+A)]+ +

Taking limits ‘
rJ(t) =p—w+ AV(t) — J(t)] + J(t)

We will be focusing on stationary environments (steady states), hence will set V(t) =
J(t) = 0. Note that, in this case, free entry requires that V (t) = 0,Vt > 0 (for simplicity,
let us omit the time argument from the value functions). From the value function for an
open vacancy, this implies

Ve=0oJ=-2

q(0)
That is, in equilibrium, the value of a filled vacancy should equal the (instantaneous)
cost of searching for a match divided by the rate of matching, or the expected hiring cost
(on average, how much does it cost to look for and hire a worker). Similarly, imposing
V' =0 on the expression for J leaves us with

Y
Cor4A

which is the natural condition stating that the value of a filled vacancy is equal to the
expected present value of profits that are extracted from filling a vacancy. Note that,
similarly to what happened when we allowed for workers to ’die’ in the context of one-
sided job search, the rate of job destruction acts as an incremental discount factor. Thus,
in equilibrium:

cp p—w pe

— = =p=w+(r+A)—7x

A St R Ty
This is the so-called Job Creation Condition: it states that the marginal productivity
of labour p should equal the wage plus a wedge term. In Walrasian terms, this additional

term is equal to zero, and we obtain the usual condition

MPp, = MCY,
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However, in this case we will generally observe p > w (the wedge is positive). This is due
to the existence of frictions in the labour market: it is costly for firms to hire workers.
Therefore, they extract some additional surplus from workers to compensate for that.
If ¢ = 0, the wedge would disappear. It is also interesting to note that the wedge also
disappears when ¢(f) — oo, which would happen when # — 0 (if we impose a Inada
condition on m). That is, when there is a very small number of vacancies or a very large
number of workers looking for a job, the firm is able to fill a vacancy almost instantly.
Therefore, it does not incur in high search costs and is willing to hire a worker at a lower
wedge (thus transferring surplus to the worker). It is this sort of dynamics that motivate
the condition V' = 0.

Value Functions of Workers

Letting z denote unemployment benefits, the derivation is standard and we skip most of
it. Letting W denote the value of employment and U the value of unemployment, we
obtain, imposing stationarity already

rU =z 4+ 0q(@)(W —U)
W =w+\NU-W)

Is there anything fishy in the above value functions? Note that, without further assump-
tions, we would usually get, for unemployment, something along the lines of

rU = z + 0q(0)E,, max{W — U, 0}

Thus we are implicitly assuming that the worker always accepts a job offer. Once again,
this can be (at least partially) justified with the model’s assumptions.

Claim 3.4.1. A worker always accepts a job offer.

Proof. Rewrite the above value functions as

[r+0q(0)|U = z + 0q(0)W
(r+ MW =w+ AU

Plug each one in the other to obtain

(r+A)z+60q(0)w
rU =
r+ A+ 0q(0)
Az [r+0q(0)|w
W= T+ A+ 6q(0)
Subtracting one from the other
o or(w—2)
riW-0) = T+ A+ 60q(0)

So that as long as w > z, we will have W > U. z is the reservation wage and, as we will
see in the next section, w is constructed such that w > z always holds in equilibrium. [J
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Wage Determination

In the Diamond model, all agents were the same. Therefore, whenever agents were
matched and traded, each one would eat a coconut, period. Now, however, things are
not that simple. The instantaneous value of a match is equal to p — w. This is a pie that
ought to be shared among worker and firm.

The model assumes that the wage is the outcome of a Nash Bargaining Process. Let
S € [0,1] denote the bargaining weight for the worker and 1 — 3 the bargaining weight
for the firm. Then, the wage solves the Generalised Nash Problem

mSX[W A

Note that (U, V) is the threat point - neither the worker is willing to obtain a wage that
induces W < U nor will the firm concede to a wage that leaves it with J < V' - the worker
has the option of remaining unemployed, as the firm has the option to remain vacant.
Taking into account that only W and J, not the threat points, depend on w, the FOC
will be

W
ow

g0V

BOV = U)* (I = V) o =

+A=pB)(J=V)PW -V) 0

We know that

p—wj@_V_ -1
r+ A ow r+ A\
:w+)\U:>8W: 1
r4+ A ow r+A

hence %—TU/ = —g—i, so that the FOC becomes
BW =0T =V)'P =1 =p)(J = V) (W -U)’

or more simply
g _1-p
wW-U J-V

which, rearranging once more, leaves us with a very intuitive condition

W—U=8W-U+J-V]

The LHS is the surplus of the worker, and this condition tells us that the optimal outcome
is to set it equal to a fraction 3 of the total surplus, obtained by adding the surplus of
the worker and that of the firm. Or

W=U+8[W —U+J-V]

the total gain from the process is equal to the reservation utility (the outside option) plus
such a fraction of the total net surplus from the process.
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We would appreciate eliminating the value functions from this problem. For the firm,
this is very easy, given the no free entry condition

_p-w o p-w
J V_r+A 0 T+ A
whereas for the worker, as we have seen
W_U:w+AU_U:w—Mf
r+ A r+ A

Thus the FOC becomes

Blp—w)=(1—pB)(w—rU)
yielding

w=Pp+(1-p)rvU

Thus the optimal wage is a weighted average of the total productivity generated by the
worker and the reservation payoff, which is equal to the flow value of unemployment, rU.
We can further eliminate this term by adopting an extremely clever method. Recall that,
from the original value function for unemployment

rU =z+6q(0)(W —U)

From the FOC for the Nash Problem, W — U = %(J — V) which, by the free entry
B_ _pc

condition, could also be written as T ha0) Replacing in the expression:

rU =z + %Gpc

So that, finally replacing in the wage equation gives us the final expression for this variable
w=Pp(l+6c)+ (1—pP)z
This gives us the wage as a function of a sole endogenous variable: 6.

Remark 3.4.4. Let p > z (not an unreasonable assumption). Then, it automatically
follows that w > z, strictly for g > 0.

Equilibrium (Steady State)

We are now ready to study the equilibrium for this model. For simplicity, and this should
once again be emphasised, we are only focusing on steady states, where value functions
are stationary.

Definition 3.4.3. A search equilibrium (stationary) is a triple (u,0,w) that satisfies
the following conditions

A
* T N1 04(0) (550)
—(r _pc.
uw = Pp(l+60c)+ (1 - P)z (WC)
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Note that if we know market tightness 6, we immediately obtain u from (SSU) and w
from (WC), as these two variables are determined separately. Therefore, if we determine
0, we have the entire equilibrium characterised.

Combine (JC) and (WC) to obtain, by substituting out w:

T+ A+ Bbg(0)
q(0)

(1-B)p-2) pe =0 T(6) =0

That is, an expression which depends only on parameters and that pins down 6. Solving
this equation gives us ¢, which then allows for determination of (u,w).

Claim 3.4.2. T'(0) <0

Proof.

Follows from ¢/(6) < 0 O

A sufficient condition for the equilibrium to exist is then for 7'(6) = 0 to be satisfied for
some # > 0. This will usually be true under the assumption that p > z.

Comparative Statics

Table 3.1 summarises some of the most relevant effects of parameters on the endogenous
variables (6, u,w,v)

Table 3.1: Some Comparative Statics

plz|B | AT
O+ |—-1—-|—1-
ul = [+ [+ [+ ][+
wl+ [ +]+ -
v +[=T=17]-

1. p 1 is an increase in the marginal productivity of a worker. Naturally, this bene-
fits both workers and firms: wages increase and unemployment goes down as more
workers accept offers. There is a somehow artificial effect on the number of vacan-
cies, since the cost of search is scaled by p (a helpful normalisation), hence the value
of a filled vacancy has now increased, prompting more firms to enter the market
looking for workers. As v 1, u |, we observe an increase in 6.
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2. z T, an increase in unemployment benefits raises the outside option of the worker.
This leads to an increase in wages as workers are now more 'protected’, and un-
employment rises as less workers decide to accept jobs. Also, the loss of margin
by firms may drive some firms out of the market, thereby reducing vacancies. As
v |, u T we observe 0 |.

3. B T, an increase in the bargaining power for workers has exactly the same effects as
an increase in z. The logic is mostly the same: workers have more power and firms
have less.

4. X\ T, an increase in the rate of job destruction leads, as we would expect, to a
higher unemployment rate. Furthermore, workers lose bargaining power and wages
decrease. This happens because, as we have seen, A\ increments the rate at which
firms discount the value of a filled vacancy. So, basically, firms now value filled
positions less. It can be shown that market tightness decreases, 6 |. Given that
this effect coexists with u 1, the effect on the total level of vacancies is ambiguous.

5. r 1, an increase in the discount rate has similar effects to the increase in A. However,
it can be unambiguously shown that vacancies decrease in this case.

Planner’s Problem

How does the congestion externality affect the welfare properties of this economy? As we
have seen, the entire equilibrium can be characterised by the variable 6. Let us consider
the case of a planner who can choose a path of socially optimal levels of market tightness
0(t). Once again, we are dealing with Constrained Pareto Optimality, as the planner
is subject to the physical constraints of the economy: the equilibrium law of motion
of unemployment. Consider, for simplicity, an utilitarian planner who places the same
weight on workers and firms.

We start by specifying the instantaneous social welfare function. At each instant, social
benefits are equal to p for each employed worker, in measure 1 — u and equal to z for
each unemployed worker in measure u. At the same time, a measure v = fu of firms are
vacant and incur in search costs pc. Therefore, the social return function is given by

Ulu(t), 0(t)] = [1 — u(®)lp + u(t)z — ped(t)u(t)

Consider, for simplicity, that the planner’s discount factor is given by e~"*. Then, the
problem can be constructed as that of a planner who chooses 6(t) subject to (t)

amax [ e = w0l + 00z = p0u(v)}

subject to



The present-value Hamiltonian for the planner is then (omitting, for simplicity, the de-
pendence of variables on t):

H=rc"[(1—u)p+uz— pchu] + p[A1 —u) — 0q(0)u]

The FOC are
OH
5 = 0= —e "peu — pulg(f) + 04'(8)] = 0
OH ) r )

Note that the first FOC can be rewritten as

961’(9)] _0

e "'pe+ uq(0) [1 + )

Let n(0) : =1+ 93;(5,?). Then, we can rewrite it as

We use the same trick as in the Diamond model to eliminate the costate from the problem:
given that the first FOC must hold for all ¢, differentiate it with respect to ¢ to obtain

_ —re”"peq(8)n(0) — e pelg (O)n(9) + ' (0)a0))d _ e 'pe e peld (9)n(o) +17(0)q(0)]

—[ = [4(0)n(0)]2 - _Tq(Q)n(Q) [q(0)n(0)]?

Notice that the first term on the RHS is equal to ru from the original FOC. Similarly,
we can also extract —u from the first term and write it as

el (O)n(6) + (B)a(6)) ;[ OO + 7 Oa®)],  [¢6) 7O,
ROLGE b= ey LW)+WWJ9

Dividing and multiplying the second term by €, our original expression then becomes

L Tde0 | nee] 6
“"“*“[«m +nw>]

Now, recall that from the way we have defined 7(0):

0

n(6) =1+ L7 5 T8 — () 1

So that, replacing in the expression, and dividing the whole expression by u leaves us
with .
i 7(6)0 6
——=r+4 —(1—=n(0))| =

n " e T
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Thus we have written the growth rate of the costate as a function of parameters and
6. This will be useful to handle the second FOC. Take the second FOC and divide it
throughout by pu

_MPp+z—pr—M+9M®%:—g

From the first FOC, we know that e:t = _q(ezjz(e), replacing this and replacing for 5
leaves us then with
q()n(6) ' (6)0 0
- —p+z—pcl] —[AN+0q(0) =r+ —(1—=n(0))]| -
), =Dt bae)] =+ |20 — - nio)| 5

which no longer depends on the costate. Rearranging gives us then two conditions that
describe the planner’s problem: the one we have just found and the law of motion for
unemployment, to which the planner is constrained

aOnO)lp+6c) =2 oo @8 8
e A= ba(0) +[n@) a m&ﬂe (sP1)
i = A1 —u) — 0g(0)u (SP2)

An obvious remark is that the planner’s decision is unaffected by the parameter 3, that
heavily influences the private equilibrium: the planner simply does not care how the
surplus from a match is split between worker and firm.

Once again, and just like how we did with the private equilibrium, let us focus on the
steady state. Imposing §) = @ = 0, these conditions become

q(0)n(0)[p(1 + c) — 2]
pc
0=X1—-u)—0q(0)u (SSP2)

—r—XA—10q(0)=0 (SSP1)

Recall that the steady state equilibrium conditions in the private case were

(= B)(p - ) - A (SSE1)
0=A1-—u)—0q0)u (SSE2)

Naturally, (SSP2)=(SSE2). Now, rearrange (SSE1) to write it as

(r 4+ A)pc
q(0)

We can also rearrange (SSP1) so that it becomes more reminiscent of the above condition

[1— B(1+6c)p— (1— B)z =

(r+ Xpc

[(6)(1+ 00) — chlp ~n(8)z =
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Notice that the RHS of (SSE1) and (SSP1) now coincide. Therefore, we would like to
study conditions under which the LHS also coincides and, therefore, the steady state
equilibrium coincides with the steady state chosen by the social planner. Clearly, this
will happen whenever

) =1-7
g .
e T

. q(0)0
Ty

This is the so-called Hosios Condition: the private equilibrium will be efficient whenever
the above condition holds.

Claim 3.4.3. —% 15 the elasticity of the matching function with respect to unemploy-
ment.

Proof. Recall that
, 1 1
q0) = —pu (5, 1)

The elasticity of the matching function with respect to unemployment can be computed
as

om(u,v) 1
ou  m(u,v)

1 1
=my (— 1) my homog. of deg. 0 and m homog. of deg. 1

[]

Thus the Hosios Condition tells us that the equilibrium will be efficient if the worker’s
bargaining power coincides with the elasticity of matching with respect to unemploy-
ment. Given that we have already suggested that the matching function is analogous to
a production function, this condition is heavily reminiscent of the neoclassical efficiency
rule that ’each factor of production should be paid a share of income equal to its relative
contribution to production’. If matching is extremely sensitive to changes in unemploy-
ment, then this means that the workers’ status can heavily affect the total surplus that
is generated in the economy. Therefore, they should, in an efficient world, earn a greater
share of income to account for their contribution to matching.
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Problem? Due to the congestion externality, workers do not take into account that they
influence the number of matches when optimising. The same happens with firms: they do
not account for the fact that the total number of vacancies affects the number of matches
that occur in each instant. Therefore, we have, once again, the congestion externality
affecting the efficiency of this search economy.

The novelty here is that, due to the mechanism through which prices (wages) are set,
there is a rough hope that the equilibrium may turn out to be efficient. However, note
that this requires 3, a parameter, to coincide with an elasticity that depends on the main
endogenous variable . Therefore, it is safe to say that, generically, these economies will
not be efficient - efficiency is only achieved for a measure zero of values for the parameters.

Therefore, the equilibrium is generically inefficient due to the congestion ex-
ternality. As the worker starts looking for a job, he does not realise that unemployment
goes up and everyone’s chances of finding a job go down.

Dynamics of the Optimal Path

In order to study the dynamics of this model, it is useful to assume an explicit functional
form for the matching function. Assume that it is of Cobb-Douglas type

l—e

m(u,v) = uv

This means that

and
0q(0) = gt—¢
So that
q(0) =~
0q'(0) = —e6—=

Recall that the planner’s optimality conditions, before imposing steady state, were

q(0)n(0)[p(L + bc) — 2] B ' (6)0 6
p” — A= 0q(0) =7+ o) (1=n)]| 5 (SP1)
U= AN1—u)—0q(0)u (SP2)
In our context, we have that
., 408
n@) =1+ o(0) =1—c¢
'(0) =0
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Thus, replacing in the planner’s conditions, we get

l—e

é:

e [(r + N)pct® + epchd — (1 —e)(p — 2)]

=X—A+e')u

Let us construct a phase diagram on the (u, ) space based on the above differential
equations and attempt to infer on some properties of the steady state. Clearly, the first
equation does not depend on u. Therefore, if we allow for 6 to be represented on the y
axis, and u on the x axis, we will have a horizontal line representing the locus of points
satisfying @ = 0. Let 0* denote the steady state value of this variable. We would like to
infer some properties regarding the stability properties of this steady state value. That
is, if 8 > 6*, will it converge to 6* or not? What if § < 6*7 We know that ¢* must be
such that

(9*)1—5

epc

0=

[(7 + N)pe(07)° + epcd™ — (1 —¢)(p — 2)]

A simple way to study the dynamics of the equilibrium is to log-linearise the differential
equation around the steady state value. That is, let 6 = g(0). Then, a first order
expansion yields .

0~ g(07) + g'(0")(0 — 07)

From the fact that g(6*) = 0, by definition, we obtain
i~ (07)(0 - 0)
Claim 3.4.4. ¢'(60*) > 0, hence 0* is unstable.

Proof. First, it is clear that if ¢’(#*) > 0, then * is unstable. A positive derivative at
the steady state means that whenever 6 > 6* then 6 > 0, so that 6 increases further and
moves further away from its steady state value. The same logic applies to 8 < 8*, as then
6 < 0 and we move further away from 6*. Note that the converse to this claim is also
true: if ¢’'(0*) < 0, then the steady state is stable.

Now, to show that the derivative is indeed positive, take the derivative at an arbitrary 6

g0 =221 @ LmT Dy

At the steady state, as we have seen, 0* satisfies g(6*) = 0, or

(1 — 5)(T + )‘) + (1 . 8)(9*)1—5 (9*)—5(1 — 5)2(]? — z)

€ epc

Evaluating the derivative at #* then leaves us with

T+ A (1—¢)(r+X)
£

g(07) = +(2-e)(07) " -
=r+A+(0)°>0

—(L—e)(0")"*
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The dynamics for this variable are then summarised in Figure 3.6.

Figure 3.6: Dynamics of 8

Theta
s
—

theta*

Unemployment

What about unemployment, u? Clearly, we have that

% =—(A4+60"9 <0
u

Therefore, unemployment will be stable: whenever u exceeds u*, it will decrease so as to
come back to the steady state, which is given by

u*——)\
A6

Furthermore, there is a unique value of (steady state) unemployment that is consistent
with #*. The dynamics of unemployment follow in Figure 3.7.
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Figure 3.7: Dynamics of u

Theta

theta*

! Unemployment

What about the aggregate dynamics? As we have seen, due to instability of 6, the steady
state (which is unique in this case) appears to be unstable. Note, however, that while u
is a stock variable, v is a jump variable. The only predetermined variable in this model
is ug (the initial level of unemployment). Therefore, in an equilibrium, given ug, we
will observe vy immediately adjusting such that 8* = Z—g As unemployment moves and
adjust towards the steady state, so will vacancies adjust. Therefore, § = 6*,Vt > 0 for
an equilibrium to exist. This means that all adjustment is made along the 6 =0 line,
for any initial condition.
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Figure 3.8: Aggregate Dynamics

Theta

theta*

Unemployment

Aggregate Dynamics and the Beveridge Curve

As we have seen, the Beveridge Curve describes a negative relationship between unem-
ployment and vacancies. Imposing steady state in the law of motion of unemployment,
and using the assumed functional form for the matching function, we have that

or

u

[gu_u)y*

Similarly, as we have seen, for an equilibrium to be attained in our model, vacancies
should immediately react whenever unemployment changes, so that § = 6*,Vt > 0. This
induces a linear relationship between the two variables

v =0%u

where 0* is some function of the parameters, 8* = f(p, ¢, ¢, z,7, A). The induced relation
between the two variables can be graphically represented as in Figure 3.9.
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Figure 3.9: Aggregate Dynamics: Beveridge Curve

v=theta*u

Vacancies

Beveridge Curve

u* Unemployment

Thus shocks to the values of parameters can also be analysed using this graphical appa-
ratus. Consider, for example, the case of a productivity shock, p 7. As we have seen, in
the comparative statics analysis, this induces a rise in 6*. The following description of
the adjustment refers to Figure 3.10 which graphically describes the process. Assume the
economy starts at steady state SSO.

1. #* T means that the v = 6*u locus has just become a steeper line throughout the
origin. The economy must immediately jump to the new line, as the equilibrium re-
lation v = 0*u must be verified at all times (otherwise, 0 diverges and an equilibrium
is not possible).

2. What will then adjust so that the economy jumps to the new line? Vacancies? Un-
employment? A combination of the two? Unemployment cannot jump down:
it is a state variable, and must move smoothly (at least downwards). Therefore,
vacancies immediately adjust and jump up, so that the economy jumps to point A.

3. Then, it is time for unemployment to start adjusting. Given the rise in 6*, un-
employment must decrease. The adjustment will then take place along the new
v = 0*u locus as the economy converges to SS1.

4. In the new steady state, unemployment is lower and the number of vacancies is

higher, due to the positive productivity shock that the economy experienced. Notice
that vacancies overshoot during the adjustment process.
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Figure 3.10: Transition Dynamics: Productivity Shock
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What if the shock was, instead, negative? Then, the adjustment would be similar, but,
this time, vacancies would undershoot: the v = 8*u would become less steep and vacancies
would jump down. Then, unemployment would slowly increase until the new steady state
(with less vacancies and more unemployment) is reached. Notice that the adjustment is
always made counter-clockwise in this model (which is consistent with the empirical data
on labour market adjustments).

3.4.3 Mortensen and Pissarides with Aggregate Productivity
Shocks

The previous discussion motivates a well-known extension of the original M-P article,
which features aggregate stochastic productivity shocks. There are two possible states
for productivity, p = {po,p1}, where py < p;. The transition between the two states
follows a Poisson process. That is, given some state p;, the rate of arrival of state p; is
given by ¢ (thus the conditional distribution is the same for both shocks).

We assume, for simplicity, that z < py < p;. This greatly simplifies the model: as we
already know, it will ensure that workers and firms always accept matches, regardless of
the state. The case in which py < z will be briefly discussed at the end of the section.
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Value Functions

The model becomes considerably more complex, as now the value of a filled vacancy,
for example, will differ across states. Index the value functions by ¢ to imply that they
correspond to the value of such state in aggregate productivity state p;. Note that,
now, we may and will have different values and dynamics for § and u depending on the
productivity state we are in. Therefore, these variables should also be indexed by .

We explicitly derive the value function for an unfilled vacancy and skip the remaining
derivations (as the logic is always the same). Assume, in the discrete formulation, that
the aggregate shock is realised between any matches are observed (as usual, this will not
matter at all once we move into the realm of continuous time). Thus, with probability
dA, the firm moves to state j and earns continuation value V;(t + A). With probability
1 — A, it is business as usual on state i. In discrete terms, the value of an unfilled
vacancy in state ¢ can be written as

B 1
14 rA

Vi(t) {=picA 4+ 0AV;(t + A) + [1 — 6A] [g(6)AT;(t + A) + (1 — g(8;) A)Vi(t + A) + o(A)]}

Rearranging and dividing by A

Vilt+A) = Vi(t) o(a)

rVi(t) = —pic+S[V;(t+A)=Vi(t+A)|+(1—-0A)q(0;) [ J; (t+A) = Vi(t+A) |+ A A

Let A — 0 and set the time derivative term equal to zero, as we will focus on stationary
equilibria, to get
rVi = —pic+0(V; = Vi) + q(0:)(J: = Vi)

Similarly, the value of a filled vacancy on state ¢ is

Note that, by indexing w; to ¢ we are assuming that there is continuous bargaining in
this model: whenever the state changes, so do the wages. It is not that bargaining occurs
when the worker joins the firm, and keeps the same wage forever: such interpretation
was compatible with the previous framework, which was fully stationary, but not with
the current one.

For the worker, the logic is pretty much the same

’I“UZ' =2z + qu(ez)(Wz - Ul) + 5(UJ — Uz)

Job Creation Condition

Note that, for two states, we are left with a system of 8 Bellman Equations to be
solved for equilibrium.
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On a stationary equilibrium, impose free entry at either aggregate state, V; = V; = 0.
From the value function for an unfilled vacancy, this implies that

pic
q (Qi)’
and from the value function for a filled vacancy, we obtain a relationship between the
values in each state

pi — w; + 0J;

r+0+ A
Substituting J;, J; from the expression for the value of an unfilled vacancy, we obtain the
new job creation condition - in fact, there will be one for each state!

P =

pjc
pic  Pi—wit gy

q0;) TS+

Simplifying:

. Dic pic  pjc
pi —wi = ( +>‘)q(91) 5<q(9i) Q(9j)>

for i = 1,2 and ¢ # j. Once again, the above condition can be interpreted as a wedge
between marginal productivity and magical cost of labour. However, the wedge is now
not only affected by the expected hiring cost, but also by the expected gap in hiring costs
between the two states. Therefore, if the current state has higher average hiring costs,
then it will induce a wider gap between productivity and wages.

Wage Determination

The logic is the same, and surrounds solving a Nash Bargaining Problem, now indexed
by ¢, the state. For each state

w; = argmax(Wi(w) = U)°(Ji(w) = V)*™

The FOC, as before, gives us

oW, 0

Witw;) - Up)™! 1= 8)(Jilws) = Vi) 5 =0
BV:(uw) = U) ™ Gt (1= B)(Js(w) — Vi) ¢
where, from what we have seen

oJi 1

ow;,  T+5+A
and, for the worker, we can write

W‘_wi+)\Ui+5VVj:>8VVi_ 1
Y rHA+0 Ow;  TH+A+0

So that, as before, gil = —%‘;UV;, and we obtain

p(Ji = Vi) = (1 = B)(W; = Us)
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Replace J; — V; by the expression we found while deriving the job creation condition to

get

ﬁpi —w; +0J;
T4+04+ A

To handle the RHS, recall that

= (1= B) (Wi = U3)

Wi
r+A+0

So that

r+A+0

Similarly, from the original specification of the value function, we have that

Wi = U =

The Nash FOC implies that W; — U; = %(JZ — V;) (for any state i), so that replacing
we obtain
B

(r+0)U;=z+ HiQ(Qi)m(Ji — Vi) +0U;

Replacing this in the expression for W; — U; gives us
w; — 2+ 6(W; = Uj) — 0iq(0:) 125 (J; = Vi)

W, U, =
r+A+0

Replacing W; — U; = %(Jj —V;)and J; =V, = pren) (from free-entry) finally leaves us
with

r+A+0

Replacing in the FOC and canceling the denominators

s

(J; = Vi) — ez'pic%)

Noting that V; = 0 and simplifying
B(pi —w) + BdJ; = (1 = B)(w; — 2) + 68J; — bipicP
Rearranging and simplifying
w; = (1= )z + Bpi(1 + b;c)

Exactly the same expression as before, just that the wage in state ¢ now depends on the
productivity and 6 at the same state. Note that there is no cross-state dependence on
wages, and w; depends only on variables that refer to the current state (at least directly).
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Equilibrium
An equilibrium will now be characterised by

1. The Law of Motion of Unemployment (there is only one)

u=MN1—u)—0;q(6;)u
2. A wage setting equation for each state
w; = (1= B)z+ Bpi(1 +bic),i = 1,2

3. A job creation condition for each state

bic bic Y218 .
pz_wz:(r—i_)\ —_'_5(—_—) 72:172
)Q(ei) q(@-) Q<9j)

As before, the wage is fully determined by 6;. Therefore, we can replace the wage setting
equation on the job creation condition to obtain

(pi—2)1=8)—(r+A+ 5@0(@'))% — 0 (% - q%j)) =0

A pair of equations which can be solved for (6;,6;), the stationary levels of 6 for each
aggregate state.

Equilibrium Dynamics

Even though each productivity state will be associated to a fully stationary steady state
(0;,u;), the economy will be moving from one steady state to the other as p; changes.
To see this, let ug, u; denote the steady state levels of unemployment for each produc-
tivity level. From prior analysis, we know that p has a negative impact on unemploy-
ment. Therefore, pg < p1 = ug > u;. Assume we start from some unemployment level
u € [ug, ug]. As we know, unemployment is stable, hence, depending on the productivity
state we are in, the economy will approach the corresponding steady state level of un-
employment. Say that initial productivity is equal to py. Then, u — ug. As before, 6 is
always equal to 6y, and vacancies adjust so that this is the case. When p, switches to
p1, the transition will invert its course and unemployment will now converge to u;. This
process will be repeated every time p; changes. Naturally, it is perfectly possible that
the economy will never reach any of the steady state levels of unemployment, and will
consistently bump up and down between those two.

Naturally, if @ > ug or u < uy, unemployment will converge monotonically to the interval
[uq, u] regardless of the changes in states, even though, obviously, the current state will
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affect the speed of convergence. To see this, assume that u < u; and the current state is
po- Then, the economy will approach the stable interval at a greater speed than it would
do if the current state were p;.

u(0)

£ Unemployment ¢
o

[

u(0)

Figure 3.11: Equilibrium Dynamics

The model becomes considerably more complicated if we allow for py < z. In this case,
whenever the economy hits the bad state, workers will prefer to quit their current jobs
and unemployment may jump upwards.
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Chapter 4

Optimal Fiscal Policy with
Commitment

4.1 Introduction

In this section, a standard version of the (Walrasian) neoclassical growth model is used to
conduct some fiscal policy analysis. In particular, we focus on models of optimal taxation:
in this setting, a benevolent fiscal authority needs to finance some exogenous stream of
expenditures. It happens, however, that the only available instruments are distortionary.
How should the authority set these instruments in an optimal way, so that social welfare
is maximised (or the distortions minimised)?

Throughout the analysis, it is assumed that the fiscal authority operates under com-
mitment: that is, when an optimal, state contingent, taxation plan is chosen at ¢ = 0,
the authority is not allowed to reoptimise after the markets open. This assumption is
crucial in the sense that it totally eliminates from the model features such as dynamic
inconsistency.

4.2 Environment and Model Set-up

As mentioned, the underlying model is a neoclassical stochastic growth model with en-
dogenous labour supply.

1. Time is discrete, agents are homogeneous and infinitely-lived. This allows us to
focus on a representative agent.

2. There is uncertainty, modeled each period through dependence on an underlying
state or set of states that belong to a finite set, s; € S = {s1,...,sny}. A sequence
of states, or history is denoted as s' = (sg,...,s;). The probability distribution
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associated with each history may be time-varying and is denoted by pi;(s'). The
initial state sy is known to the fiscal authority when choosing the optimal taxation
plans, before markets open.

3. There are two goods: labour and a consumption good that may also be used for
investment.

4. Government expenditures are exogenous and expressed in terms of the consumption
good, {gi(s")}22o-

5. The economy’s feasibility constraint is standard, and notation is set such that cap-
ital chosen as part of current investment is denoted by k;(s’). This means that
capital used in production at ¢ is k;_1(s*™1)

ci(s) + gi(s") + k(') = Flh_1 (5" 1), 1(s"), 8] + (1 — 6)ki_1(s"1)

Note that the production function is allowed to depend directly on s;, the current
state (through a technology shock, for example).

6. Preferences are given by

U=3"3" Bmlsulest), b(s")

t=0 steSt

where 5 € (0,1), S* is the set of all possible histories up to time ¢, u is strictly
increasing, strictly concave and three times continuously differentiable. Inada con-
ditions ensure that ¢;(s') > 0 and [;(s*) € (0,1), for simplicity, so that we do not
have to worry about interiority of solutions.

7. The government can use three different instruments to finance the exogenous stream
of expenditures:
(a) Proportional labour income taxes, 7:(s")
(b) Proportional taxes on capital income 6;(s")
(c) Public debt b;(s")
The government budget constraint, which we will shortly present, must be satisfied
for all . This means that the government will only be able to freely set two of the

three instruments at any given point in time, as the third will be the residual and
determined by the other two plus expenditures.

Given the description of the environment, and letting w;(s'), r;(s'), R?(s') denote wages,
the net interest rate on capital and the gross interest rate on public debt, respectively,
the sequential budget constraint for the representative agent can be written as

ce(s')Fhe(s')+be(s") = [1=7e(s)Jwe ()l (8")+H[1+(1=0(s)) (re(s") =) k-1 (") + Ry (s) b (")
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Notice that 6;(s") taxes capital income net of depreciation. For notational simplicity, let
us define a gross effective interest rate on capital as

Ri(s") = [L+ (1 = 0,(s"))(r(s") = 0)]
The additional constraints imposed on the representative agent are:
L. ¢(s') > 0,1,(s") € [0,1], which will be trivially satisfied thanks to the Inada condi-
tions.

2. ky(s') > 0, there is no capital borrowing in the model.

3. bi(s') € [-B, BY], there is an exogenous borrowing limit on debt imposed on the
agent, B. Furthermore, the government faces a borrowing constraint equal to B¢,
so that this is the total maximum amount of public debt that can be outstanding
in the economy.

4.3 Describing the Equilibrium

4.3.1 Competitive Equilibrium

Some familiar definitions are adapted to this particular setting. We consider the tradi-
tional definition of competitive equilibrium that is silent on how fiscal policy is pursued,
and just presupposes that a public budget constraint is satisfied.

Definition 4.3.1. An allocation X = {z:(s")}{2) ueq 5 a sequence of collections of
quantities, where

2e(8Y) = [cs(sY), 1:(sY), ks (s7), by (Y]

Definition 4.3.2. A price system P = {p,(s')};°) .cq 15 a sequence of prices

pe(s') = [we(s"), ("), Ry (s")]

The government must satisfy a budget constraint, taking the stream of expenditures as
given. This constraint must be satisfied at any period and node s,

ge(s") + Ry (b1 (8"71) = by(s") + (s ) (s (s") + 0y (s") [re(s") — 8]k (")

where the LHS presents total expenditures (exogenous expenditure plus principal and
interest payments on outstanding public debt), and the RHS corresponds to public rev-
enues: bond issuance, labour income taxes and capital income taxes.

Definition 4.3.3. A government tax policy is a sequence ¢ = {1(s"), 0:(s")} 2 yrege-
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Note that public debt is implicitly considered as the residual fiscal instruments, whose
adjustment ensures that the public budget constraint is satisfied at all times.

We proceed by presenting the usual definition of equilibrium:
Definition 4.3.4. A Competitive Equilibrium is a government tax policy ¢, an al-
location X and a price system P such that

1. Given ¢, P, the allocation X solves the household problem.

2. Given ¢, P, firms optimise by solving a static problem

(") = Filke—1(s'™1), ("), 5
wi(s') = Filke1(s"71), li(s"), 5]
3. The goods market, labour market and bonds market clear.

4. The government budget constraint is satisfied.

4.3.2 Ramsey Equilibrium

We now proceed by slightly tweaking the traditional definition so as to bring it to the
realm of optimal taxation policy. The whole point of the Ramsey Problem (=optimal
taxation problem) is, as explained, for the government to finance its expenditures by
causing as much little distortion as possible over private decisions. This suggests that the
fiscal authority will solve a problem not unlike that of a social planner who seeks to find
a constrained optimal allocation: a socially efficient allocation that can be supported as
an equilibrium given the physical /technological constraints faced by the economy.

Therefore, the government will want to choose a tax policy ¢, but accounting for the
fact that people’s decisions will change upon different choices of ¢. Therefore, different
equilibria may emerge. The following definitions formalise this notion of dependence.

Definition 4.3.5. An allocation rule is a sequence of functions

X(¢) = {z:(s'10)}iZ0 sresr

Definition 4.3.6. A price rule is a sequence of functions

P(¢) = {wi(s'¢), e(s"|9), By(s']6)} 0 sese

Leading us to the main object of interest in this section:

Definition 4.3.7. A Ramsey Equilibrium is a policy ¢, an allocation rule X (¢) and
a price rule P(¢) such that:
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1. The policy ¢ solves the Ramsey Problem

max Y S Al ule(s'10). L(s'10)

t=0 st est

subject to

(1) + RO (5'116) = b 10) b5 10)un (5 |0 s10)-+ (5 10) [ 1)~ 0+ ()
and k_1,b_1,00(s0) given.

2. For every ¢, the allocation and price rules X (@), P(¢) constitute a Competitive
Equilbrium.

This formalises the notion that the government chooses, at ¢ = 0, before markets open,
an optimal sequence of fiscal instruments that maximises the present discounted value
of utility for the representative consumer. Moreover, in the constrained optimality spirit
of the whole problem, the government must choose sequences that induce competitive
equilibria, thus taking the distortionary equilibrium effect of its own tax choices into
account when setting the instruments.

Note that the whole point of the problem is that the government has more than one
possible tax instrument available for financing expenditures. If only one instrument were
available, policy could be discretionary and still constrained Pareto optimal. Thus the
whole problem arises from a nontrivial choice between tax instruments.

By imposing commitment, we are ruling out issues such as dynamic inconsistency: the
government chooses a sequence of taxes at ¢ = 0, and cannot do anything else once mar-
kets open. Note that ¢ is a complete state-contingent tax plan. Commitment is important
because it prevents the government from undertaking actions that, while seemingly op-
timal in a static context, are not so in a dynamic setting. Once markets open, agents
take decision and prices are formed, the government could be tempted to change its own
course of action. For example, lowering labour taxes and raising capital taxes if too
much savings is perceived in the economy. This is the point of the second part of the
definition: by forcing the government to acknowledge that X (¢), P(¢) must constitute
equilibria along with ¢. Thus the last condition effectively imposes subgame perfection
Chari and Kehoe (1998) discuss this in detail: if the last condition is not imposed, then
we are effectively not imposing optimality on off-equilibrium paths and the set of equilibria
becomes much larger, including arbitrary equilibria that make no sense at all.

It is also worth discussing the not innocuous assumption that y(sg), the initial tax on
capital income, is given. This is done to ensure that the economy can actually start off.
If the government had control of 6y, and k_; is given, it could be tempted to fully tax
capital in period 0. Why? Since initial capital is given, by raising the capital income
tax the government would, in effect, be levying a lump-sum tax (as this would no distort
the agents’ decisions). Therefore, the government could raise a non-distortionary tax
today, save its proceedings and reduce usage of distortionary taxation in future periods.
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However, the government may be tempted to set this tax to such a level that capital is
fully taxed. This would imply no investment and, therefore, no production in subsequent
periods - the economy would be trapped in a zero production equilibrium. Further note
that by choosing 6 and 7, we are giving the government control of effective factor prices
and, through that, control over demand and supply of each factor of production.

Equilibrium Conditions

Let p, denote the shadow price of consumption in each period, the Lagrange Multiplier
associated with the household’s budget constraint at each period. It can be easily checked
that the following equations fully describe a competitive equilibrium

ce(s')Fhe(s')+b(s") = [1=7e(s)Jwe ()l (8)+H1+(1=0(s")) (re(s) =) ket (") RE ()b (")

(HBC)

Blue(s)m(s') — pi(s') <0 (CFOC)

Bru(s)mi(s") 4 pe(s")[1 — 1 (s")]we(s") <0 (LFOC)

pe(s") — Z Praa (s R (s | bu(sh) = 0 (BCS)

| St1|st

pe(s') — Z pera(s I)Rfﬂ(SHl) ki(s') =0 (KCS)
i st+1lst i

Jim > p(sHbi(s) =0 (BTC)

tlim Zpt(st)kt(s )=0 (KTC)

(") = Fi[ki—1(s1), 1i(s"), s4] (KF)

wi(s") = Filke—1(s"1), 1i(s"), s¢] (LF)

1. (HBC) is the household’s budget constraint

2. (CFOC) and (LFOC) are the houschold’s FOC with respect to consumption and
labour

3. (BCS) and (KCS) are the complementary slackness/non-arbitrage conditions with
respect to bonds and capital emanating from the household’s problem. They can
also be seen as Euler Equations

4. (BTC) and (KTC) are the necessary and sufficient transversality conditions with
respect to bonds and capital

120



(KF) and (LF) are the firm’s FOC

D.
6. (GBC) is the government’s budget constraint

and u., u; denote the marginal utility of consumption and disutility of working, respec-
tively.

4.4 'The Primal Approach

The Ramsey Problem is typically difficult to solve in its pure form, as presented above.
The government would have to maximise the present discounted value of utility subject
to the full set of equilibrium conditions that were outlined in the previous section.

An alternative approach to the Ramsey Problem involves consideration that, by choosing
taxes, as already remarked, the government can effectively control effective factor prices
and, therefore, demand and supply of all goods that are traded in this economy. This
gives rise to the Primal Approach, a setting where prices and taxes are eliminated from
the problem, and the government chooses allocations directly. Thus the government ef-
fectively solves the Ramsey Problem, but instead of being constrained to a full set of
equilibrium conditions, it needs only to consider feasibility and an additional condition
that, as we will show, ensures that the chosen allocations are compatible with a compet-
itive equilibrium. These two constraints will be the typical feasibility constraint and,
the second, that ensures that the allocations are compatible with an equilibrium, will be
called implementability constraint.

The name of this method is chosen to contrast with the original dual approach, in which
the government chooses taxes directly and must account for their impact on allocations
and prices.

Equivalence between the two approaches is established by the following result:

Proposition 4.4.1. The allocations in a competitive equilibrium satisfy the feasibility
constraint

ci(8) + gi(s") + k(') = Flhe_1(s" 1), 1(s"), 8] + (1 — 6)k_1(s"1)

and the implementability constraint

S Bt el )erl(s') + unlsie(s)} = we(s0) R (s0) k1 + T (s0)b_1]

t=0 st

where
Re(s0) = 1+ [1 = 0o (s0)][Fi(k-1,10(50), 50) — 0]

Furthermore, given allocations and time 0 policies that satisfy feasibility and imple-
mentability, we can construct policies, prices and debt holdings which, together with the
gwen allocations and time 0 policies, constitute a competitive equilibrium.
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The spirit of the proposition is the following: for any allocation that satisfies feasibility
and implementability, there is a competitive equilibrium from where prices and fiscal
polices can be ’'backed out’. Note that both constraints can, in some sense, be seen
as budget constraints: while feasibility ensures that the allocation is physically feasible,
in the technological sense (as in all resources that are consumed or employed exist/are
produced), implementability ensures that whatever equilibrium is generated, the rep-
resentative agent’s budget constraint is satisfied. After all, and as we shall see in the
proof, implementability is almost a time zero budget constraint, where prices have been
substituted using first order conditions, both on the firm and the agent’s side.

Proof. We first show that the allocations in a competitive equilibrium satisfy feasibility
and implementability. Feasibility is almost immediate. Take (HBC) and (GBC). Add
both sides in order to get (I will omit the state argument momentarily for notational
ease)

c + k’t + bt + agi + Rgbt_l = (1 — Tt)’wtlt + Rfk’t_l + R?bt_l + Ttwtlt + bt + 9,5(7} — 5)l€t_1
Cancel all common terms and replace for R to obtain
et ke + g =wily + (L + 71— 0)ki

From (KF) and (LF), and the fact that the neoclassical production function is homoge-
neous of degree one, we obtain

et + ke + g = F(ki—1, by se) + (1 — 0) Ky
as we wanted.

To show that a competitive equilibrium allocation satisfies implementability, first multiply
(HBC) by the shadow price p;(s') and rearrange to obtain

0 = pu(s")leals )= [1—7e(s o5 a5 k(s 4B (5) = RE(s Ve (') = RU( by ()

Now, sum the above expression over all periods and possible histories. Since the above
budget constraint must equal to zero at each node s?, so must the sum equal zero

o0

0= Z Zpt(St)[Ct(St)—[1—Tt(st)]wt(st)lt(st)+kt(st)+bt(st)—Rf(st)kt_l(st_l)—Rf(st)bt_l(st_l)]

t=0 st
In particular, break down the above sum in its consumption and investment parts as

0=3"3" n(")leals) = [1 = 7"V uwn(sa(s")]

t=0 st

aim 3OS pu(els”) + b5 — REGS ke (') = R b (571

t=0 st
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From the investment part, separate the terms concerning period ¢ = 0 from the rest

=SS pulshlenls) — 11— 7o) wn(s)la(s)

£ poso) ko(s0) + bolso) — Ri(so)k_ — Ri(so)b_1]
+oim S gl ha(s!) + b5 — BE(sH k() = R (5]

We now want to group all capital and bond terms in such a way that they have the same
timing. Ignore the terms timed at t = —1, as the agent has no control over them. Take,
for example, all terms relating to physical capital. We can rewrite the sum over time and
states as (ignoring the limit term for notational simplicity)

ZZZpt(st) Zzpt kt 1( )

Po(s0)ko(s +Zzpt Zzpt sk (s )

t=0 st
T

= Z Zpt(st) ZzptH R,];_ ("1 ky(s")
t=0 st t=0 gt+1

while the first step simply grouped the ¢t = 0 term with the first summation, the second
step cunningly changed the indices of the summation: instead of summing current prices
times past capital, we have switched notation such that we now sum future prices and
current capital. This allows us to use capital with the same timing everywhere in the
expression. The tricks have not ended: note that summing over all histories at ¢t + 1 is
exactly the same as summing over all histories at ¢ and then summing over all possible

nodes that may follow. That is
sttl st spy1]st
akin to conditioning. Apply this transformation to write the previous term as

Zzpt(st) ZZ Z Prr( t+1( t+1)kt(3t)

t=0 st =0 st spp1]st

- ZZ pi(s Z Pera (s Ry (s +ZPT s')kr(s")

t=0 gt Seq1st

Do this not only for capital, but also for bonds, in our time zero budget constraint to
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obtain the following expression

0=3" > prls")len(s") — [1 = mulsuwn(s" (51

t=0 st

— po((s0)[RG(s0)k—1 + R (s0)b_1]

T
+T1£I;ozz Pe(s Z Pey(s Rf—&—l( tH) k?t(st)

t=0 st St+1]st

+ lim ZpT )k (s")

+T1£I;OZZ prls') = 3 praa(s R (5 | (s')

t=0 st St+1]st

+ lim. ZpT "br(s")

From (BCS), (KCS) (the Euler Equations), the third and fifth lines are equal to zero.
Also, from (BTC), (KTC), the fourth and sixth lines are zero as well . Thus we are left
with

YD wilshle(s) = [L—muls)w(s)(s")] = po(s0) [Ro(s0)k—1 + R (50)b-1]
From (CFOC) and (LFOC) we know that
pi(s") = B'm(s"Jue(s")
po(s”) = ue(s0)
—(1 =7 (s"))we(s")pi(s") = B'mi(s")w(s")

so that replacing, we obtain

DD BimlsNuc(shen(s”) + w(s')(s")] = we(so)[Rg (s0)k-1 + R(50)b-1]

t=0 st

which is exactly the implementability constraint, as we wanted to show.

It now remains to show that from any allocations satisfying feasibility and implementabil-
ity, we can back out prices, tax policies and debt holdings that are consistent with a
competitive equilibrium.

To see this, take some real allocation {c;(s'), l;(s"), ki(s')}52, satisfying both feasibility
and implementability, given initial conditions (k_1,b_1, RE, R}) and an exogenous se-
quence of expenditures {g;(s")};2,. We seek to construct a competitive equilibrium by

LClearly, none of these expressions can be negative in equilibrium. Given that effective interest rates
are bounded, it can then be shown that the transversality conditions imply that those two lines will be
Z€ro.
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‘constructing’ the supporting sequences {b;, wy, s, R, 74, 0;} that compose a well-defined
equilibrium.

We start by constructing bond holdings, b;. To do this, fix some arbitrary node s". Take
the agent’s budget constraint at s”, multiply both sides by the shadow price p,(s*) and
sum over forward nodes, starting with the immediate successor node of s”

Z > pil(sh)ei(s’) + k(") + b(s Z D o(sHI(L = 7(s"))wi(s)u(s")

t=r+1 st|s" t=r+1 st|s"
+ Ry(s")b1(s"71) + Ry (s ki (s'7)]

Isolate the financial sector from the ’consumption’ sector

Y D wilshlels) = (1= mls)we(s)(s")] =

t=r+1 stls'r

i 3 S n ) + ()
—>cot r+1 st|s”

+ Hm lept sb1(s"71) + RE(s") k1 (s"71)]
t=r+1 st|s”

Take the second term on the RHS of the budget constraint and decompose it in the two
terms: the immediate successor node of s" and the remaining nodes

A Z Zpt s)be—1(s"1) + R (s ko1 (s71)] =

t=r+1 st\sr
= Y DR (570 (57) + REL (57 k()
Sr1|s”
+%£20t222pt b (57) 4 RE(s ks (5]
r+2 gt|sT

Also, the first term on the RHS of the budget constraint can be decomposed as

'Ilggo Z Zpt +bt = lim Z Zpt +bt( )]

T—00
t=r+1 st|s™ t=r+1 st|s™

+ lim ZpT sT) + bp(sT)]

ST|8T

Capital is always non-negative, due to the borrowing constraint, and we would like to
construct an equilibrium in which the government does not keep resources for itself (which
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is clearly suboptimal from a welfare point of view). Thus we seek to have by > 0, which
implies that

In order not to miss any history, sum over s” to obtain

jlggoZpT T+ br(s")] > 0

For the Transversality Conditions to hold, the above term must be exactly equal to zero.

Having established that kr, by > 0, and wishing to impose the Transversality Conditions
we have that

hence

Now, impose the above condition and take all the decompositions back to the original
budget constraint, writing it as

DY nushels’) = (1= 7(s)wi(s")l(s")] =

t=r+1 st|s”
T-1

== Jim 37 ns k() + (5]

t=r+1 st|s"

+ D pen (8RB (STb(") + By (87 ko(s7)]

Sp41|s”

bl Y S R s () R ()

t=r+2 st|s"
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Use the 'conditioning trick’ to combine the first and third terms on the RHS

Z Zpt(st)[ct(st) — (1= n(s"))we(s)(s")] =
t=r+1 5t|5T
T—-1
= — Hm Do els) = > pealsTREL (ST | k(s
t=r+1 st|s" sttl|st
T—-1
— jm DD s = > pealsTTHRL (S| bi(s)
t=r+1 5t|5r gt+1 ‘St
3 PSR (b (87) + REL (57 (7))
Spg1|sT

In order to be consistent with a competitive equilibrium, we need the Euler Equations to
hold. Hence the second and third lines should all be equal to zero. This leaves us with

Yo D mlsDlels’) = (1= mls"))wi(s")lu(s")]

t=r+1 st ‘S”‘

= D pea(s"RY (870 (87) + Ry (87 ke(s7)] =

Sp+1]s”

But, from the Euler Equations, we can rewrite the second line as

ST Pt (8 )R (87 (87) + Ry (57 (57)] =

5r+1|5r
Z Pra (8" RL (87 + K Z Praa (s Ry (57 =

Sr1ls” Sry1ls”

= ke (s")pr(s") + b (s")pr (")
Finally leaving us with a much more simplified expression for the budget constraint

Yo D wilshlels’) = (1= 7u(s))wa(s)e(s")] = ko (s)pr(s") + bo (s )pe(s7)

t=r+1 st ‘ST

Furthermore, from the FOC for the consumer

—U—n@ﬂﬂﬂfmwﬂzéﬁﬁgggﬁ

pi(s') = B'mi(s"Jue(s")
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Replacing in our condition then leaves us with

by(s") = —k,(s") + ! lim Z Zﬁtﬂt (s")ee(s") + (s (s")]

/BTUC(8T>71— ( Tﬁ)oot r4+1 8t|8T

Thus we have managed to construct, for any arbitrary node, a sequence of bond holdings
as a function, only, of real allocations (which we have by assumptions). That is, {b;:(s")}
depends only on the model’s primitives and our initial raw materials, {c;, l¢, bt }!

Now note that {r(s"), w(s")}2, can be easily constructed from the real allocations using
the firm’s FOC, as a function of {k;,[;}. It remains then to determine (R?, ;, 7). Labour
income taxes can be extracted from the FOC for labour, from the household’s problem.
After replacing for p(s'), we get

w(s') + wy(s)ue(sh)

) = T )

where all objects are already known (including wages).

Thus the last step is to determine the interest rate on bonds and capital income taxes.
Note that, in reality, only one of these variables is required: given that r; is known, if we
manage to pin down 6, then we get RF and R’ can be extracted from a non-arbitrage
condition. From the Euler Equation for capital, replacing for p;:

m(suc(s) = Y Brea (s u(s T RE (s7)

st+1\st

From the Euler Equation for bonds
(s ue(s") = Y B (s ue(s™ RY (57

St+1]st

and the budget constraint at ¢t + 1:

e (877) + Kepa (877) + bypa (877
= (1= 7ip1 (s wera (87l () + Rt+1( s ki(s") + Rt—l—l( s)bi(s")

we obtain n + 2 equations on 2n unknowns for the return rates, assuming that there are
n nodes in the immediate succession of s'. There are 2n unknown return rates: one for
capital and one for bonds at each successor node. There are 2 + n equations: 2 Euler
Equations and n budget constraints at ¢ + 1. Note that at this point we have already
determined everything else that enters the budget constraints and Euler Equations,
except for the rates of return! Clearly, we can only retrieve the rates of return when
n = {1,2}. There is an indeterminacy that cannot be solved without further assumptions
on the model. A way to solve this problem is to assume that 6;(s") is constant over
successor nodes. That is, the capital income tax rate may differ across time, but it does
not differ across nodes for any given point in time. In case this assumption is made, recall
that

Ri(s1) = 14 (1= 1) [rea (1) — 0]
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and replace this in the Euler Equation for capital. Clearly, we can now solve for the
unique 6;11:

mi(shue(s) = D B (s el + (1= Opan)[rega () = 0]

st+1st

Thus we can then construct the sequence of bond returns and the equilibrium is fully
characterised. ]

4.4.1 Indeterminacy and Tax Regime Equivalence

It is immediate to see that, using the above proposition, the same competitive equilibrium
allocation can be reproduced using a myriad of different tax instruments. The proof in
the previous section departs from a particular equilibrium allocation and constructs a
Ramsey equilibrium based only on two tax instruments: labour and capital income taxes.
In principle, the government could have an arbitrary number of tax instruments at its
disposal and still be able to induce the exact same competitive equilibrium allocation.

The degree of indeterminacy, however, is greater than what the above paragraph suggests.
In the last part of the proof of equivalence of the primal approach, we are faced with an
indeterminacy arising on the capital income tax. This should make it clear that even if
two fiscal authorities are endowed with the same instruments, different menus of policies
are compatible with the same competitive equilibrium allocation. In other words, the same
real allocations can be consistent with different sequences of tax rates, even if the tax
instruments themselves are the same. This is because, thanks to its nature, the Ramsey
problem identifies wedges and distortions: allocation differences that are generated by
the fact that some instruments are distortionary. It does not determine, directly, tax
instruments, but rather allocations.

To see this more clearly, consider an economy whose fiscal authority has three tax in-
struments at its disposal: the previous two (7, 6;) as well as a consumption tax 7. In
this case, the intra and intertemporal optimality conditions for the agent can be easily
checked to be of the type

gtt1
c Z 57Tt+1 St+1 1 _f_ >[1 + (1 - 9t+1)[7"t+1(8t+1) - 5]]
T

st+1]st

Consider an alternative authority which, while endowed with the same set of instruments
¢, chooses different tax levels ¢. In particular, it sets the capital income tax to zero,
0; = 0,Vt > 0. Thus the Euler Equation, in this economy, is

u(s") uc(s") 41
~c ™ ) ——|1—-d0+r st
7~ X P = ()
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It is clear that, given the same initial conditions, if ¢ and ngS are such that

L+ 7 1+ 7f
—r 1+(1-0 reg(sH) =6l = ——E 1+ r g (s =6
1 +th+1[ ( i) [reea(s7) = 4] 1 +th+1[ 1(s) — 4]

and

-7 1-7

L+7f  1+7f
then the consumer’s decisions are all distorted in exactly the same way, for any period
and any node. Therefore, these two different tax policies will generate exactly the same
competitive equilibrium. This highlights the fact that what matters for real allocations
(and, therefore, welfare) are wedges and distortions, and not the taxes directly.

Naturally, if more and more tax instruments are added, the dimension of the indetermi-
nacy will grow.

4.4.2 Ramsey Taxation in Practice

At this point, the following proposition should contain an obvious result:

Proposition 4.4.2. The allocations in a Ramsey Equilibrium solve the following problem

{ct(st) lt?slax Yoo ZZBW )lt( )]

totOst

subject to the Feasibility and Implementability constraints, for (k_1,b_1) given.

So that, as suggested in previous sections, it is usually easier to adopt the Primal Ap-
proach, find the optimal allocations and then back out the equilibrium, than to solve for
optimal taxes subject to the full equilibrium conditions.

To see an application of this, let A denote the Lagrange multiplier on the Implementability
constraint (there is a unique constraint of this type) and {,} be the sequence of Lagrange
multipliers on the feasibility constraints for each period. It is useful to define the following
function (I omit state dependence)

W (e, Uiy A) = uley, ly) + Mueer + wly]

where, note, it contains the 'summable’ part of the implementability constraint, with the
multiplier already included. Then, the Lagrangian for the Primal Problem can be written
as

L= B'mW(eli, \) — Me(s0)[Rek_y + Rib_1]

t=0 st

+ Z Zﬁtﬂ-tﬂt[FUft—la li,se) + (1 —0)ki—1 — ¢t — g1 — k)

t=0 st
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The typical FOC for a period ¢ > 1 will be of the type

_VVl(St) - st
W,(st) Fi(s)

mWe(s)) = ) BreaWe(s™)[L + Fi(s™) = 4]
Sty1|st

which are extremely similar to the FOC we would find in a regular representative problem.
The only difference is that utility has been replaced by the distorted utility function
W. This function W is equal to utility, period by period, plus a term that accounts
for the distortions generated by taxes over equilibrium allocations, the ’summable’ part
of the implementability constraint. Note that each of its derivatives, W, and W, will
usually depend on second-derivatives and cross-derivatives, given that the component of
the implementability constraint that it includes incorporates marginal utility terms. For
example, the first FOC will be

w (') + Mg (s ep + Mg (s*) + Aug (s')l
Ue(5Y) 4 Mige(5t) e + Mue(st) 4+ Auge(s)l;

Fi(s")

In spite of this, we can obtain some immediate insights from the above optimality con-
ditions regarding optimal taxation. To understand this, consider the second FOC, and
impose a non-stochastic steady state. Then, it tells us that

1=p5(1+F,—9)

which is exactly the same optimality result that we would obtain in a regular growth model
with no government, the modified golden-rule. Note that this implies, immediately, that
capital taxes should be equal to zero, at least in the long-run. If they were non-zero,
the above condition would feature a wedge term on the marginal productivity of capital.
This is a well-known result derived by Chamley (1986).

The intuition behind this is that capital taxation distorts savings decisions, and induces
agents to underaccumulate capital and underconsume throughout their lives. Not only
that, but it also forces them to work more. When the government only employs distor-
tionary tax instruments, such as labour income and consumption taxes, the distortions
generated by these are amplified in terms of welfare losses.

To understand how perverse capital taxation is, consider the case of some economy A
where capital income is taxed. For simplicity, let us focus on the non-stochastic case.
The Euler Equation in that economy is then

Ue ¢
—— = B[l + (1 = Ops1)[Frp41 — ]
uc,t+1
Now, consider some other economy B, where a consumption tax is levied instead of a
capital tax. The Euler Equation is thus

Uey L +77

)

Uepr1 1+ T75

Bl + Fyye1 — 9]

131



Clearly, for real allocations to coincide in these two economies, given the same initial
conditions, we must have that

1+7f

L+ (1= 0p1)[Frgpr — 6] = T4 e
t+1

1+ Fjpq1 — 0]

or
14 th . 14 (1 - 9t+1>[Fk,t+1 — 5]

L+78, [1+ Frpr1 — 9]
Assuming the allocations coincide, and that the marginal productivity of capital is thus
identical, we must have that from 6,1 > 0

1477
I+ 75,

Thus, capital income taxes amount to ever increasing taxes on consumption. That is the
only way for the two economies to have the same allocation. Thus capital income taxes
are an ideal way for an economy to be led to total obliteration in the long-run.
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